

TRANSFORMERS & BUSWAYS SOLUTIONS

COMPACT BUSWAYS - HE

BAHRA TBS CAST RESIN TRANSFORMERS & BUSWAYS SOLUTIONS

The power solutions for commercial and industrial sector applications

HIGH EFFICIENCY CAST RESIN TRANSFORMERS UP TO 5000 KVA

Bahra TBS high-quality cast resin transformer are the ideal choice for all needs thanks to their different advantages:

- Total safety for the customer, guaranteed by the total absence of combustible products,
 Maximum environmental protection, thanks to the absence of polluting and flammable.
- Maximum environmental protection, thanks to the absence of polluting and flammable insulating liquids.
- Energy saving, with the exclusive "reduced loss" range.
- Maximum flexibility straight from the beginning of the installation.

COMPACT BUSWAY FROM 800 TO 6300 A

The busway is the most modern solution for the distribution of energy in an installation for machinery, equipment and lighting fittings, in all types of buildings.

The busway is also frequently used to power the (horizontal and vertical) backbones of buildings used for the commercial-service sectors, thus observing the time required for the installation and providing a final solution with remarkable technical advantages.

INDEX: Busways

- 04 Bahra TBS Factory overview
 06 Product Offer Technical details
 07 Product Offer Elements and Accessories overview
 08 Bahra TBS Busway Advantages
 10 Product Selection Item codes (Busway element & Accessories) Straight element

 - Elbows
 - Double Elbows
 - T element
 - Connection Interface with Exit bars
 - Tap-off Box
 - Hanger Brackets
- 47 : Technical Information
- 54 Installation Guidelines

BAHRA TBS FACTORY OVERVIEW INTEGRATED SOLUTIONS FOR GLOBAL PROJECTS

Bahra Electric began in 2008 and it is a leading manufacturer of an extensive range of electricity distribution products. In 2015, Bahra Electric expanded its manufacturing facilities & product range by creating a new factory "Transformers and Busways Solutions Company" specialized in producing high efficiency transformers and busways in partnership with Legrand France as an initiative to localize the important industries in the kingdom of Saudi Arabia and to become market leader in its industry. In-line with Kingdom of Saudi vision 2030, Bahra Electric has acquired Transformers and Busways Solutions Company (TBS) in 2021 and has signed a license agreement with Legrand France SA permitting to use the existing designs and knowhow. Bahra Electric has crafted the new brand of TBS to be a Bahra TBS.

Bahra TBS is spread across 50,000 sq m area equipped with state-of-the-art latest European & Italian technology with complete backward process integration including epoxy casting and tinning. The manufacturing facility have implemented the Integrated Management Systems: ISO 9001, ISO 14001 & OHSAS 18001 as well as SASO mark.

Details matter. At TBS you can rest assured that your project is managed and executed in a pro fessional manner. Every single detail is important. A full-fledged team of experts overlook your projects from the very beginning of the design stage all the way to the testing and commissioning and even after the handing over of your project.

We provide consultants a design support from the very beginning. Our design department is able to make solid electrical systems covering every detail of your requirements. Technical Support

Our skilled technical expertise is at your disposal for consultation, training, orientation and support during the course of your project. We conduct regular training courses.

Product Availability

Our factory along with our wide network of partners and distributors in the Middle East region ensure a sustainable product availability to secure fast deliveries, efficient logistics alteration. Testing & Commissioning

We cover all preliminary tests and inspections, functional performance tests and the supervision of commissioning of busways & transformers.

After Sales Service

A vast team of technical experts within Bahra TBS and our partners' teams are at your disposal for extending full After Sales Support meeting your expectations.

Technical Support at your service

Bahra TBS with its innovation and cutting-edge technology continue setting up latest trends in the market which enables us to meet the needs of our customers. You can be assured that your project is handled in the most efficient and professional manner meeting the industry standards and specifications.

We have all the necessary resources used to keep pace with market trends through our:

- Technical expertise capable of providing the most practical and cost effective solutions for projects of any size.
- Bahra TBS Design office supports customers throughout every step of their project providing a single contact, which is competent and easy to reach.
- Strong presence and experience of all our partners and distributors in the market.

COMPACT BUSWAYS - HE BAHRA TBS PRODUCT OFFER

BUSWAYS FROM 800 TO 6300 A

Complete market coverage from standard specs to high specs rating **(low current density)**

EPOXY INSULATION

- High operating temperature
- Dielectric strength
- Requires thin coating which is better for heat dissipation
- Fusion bonded epoxy prevents moisture penetration
- Seamlessly Insulates holes in busbars

ALUMINUM CASING

- Light weight
- Corrosion resistance
- High thermal conductivity
- Easy to manufacture

COPPER CONDUCTOR

- High electrical conductivity
- Resistance to oxidation
- Thermal resistance
- Reliable Strength & durability

APPLICATIONS

- High rise building
- Hotels
- Hospitals
- Banks
- Airports
- Data Center
- Industries
- Shopping Centers

Compact BUSWAYS (Main Features)

- availability in the standard range: from 800 A to 6300 A with copper conductors.
- compact dimensions enhance its resistance to short circuit stresses.
- low impedance of the circuit; by controlling the voltage drops and allow for the installation of high power electrical systems, even in extremely confined spaces.
- Excellent performances the installation and design of the paths is quick, easy, and flexible.

(I) IP65/IP66 available upon request (2) Class F insulation available upon request

- availability with a wide selection of tap-off boxes that range from 63 A up to 1250 A, thus allowing you to locally protect and feed different types of loads by housing protective devices such as fuses, MCCBs and motorised switches
- compliance with the IEC 61439-6 standard;
- referred to the average ambient temperature of 35 °C against the required by the Standard.

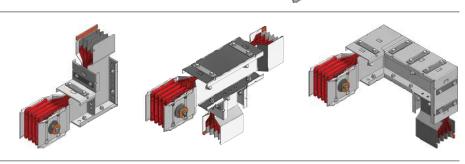
- Insulation Material Epoxy
- Casing: Aluminum
- IP Protection 55^[1]
- Grounding / Earthing
- Insulation Class B⁽²⁾
- Certification:

Complete range is fully type tested by LOVAG, SASO & ISO.

COMPACT BUSWAYS - HE BAHRA TBS PRODUCT OFFER

Straight elements:

Supplied with its pre-installed monobloc. Feeder elements: - Standard length: 3 m - Special length: from 1 m to 3 m Distribution elements with tap-off outlets: - Standard length: 3 m - Tap-off outlets: Up to 5+5 spaced at 580 mm.



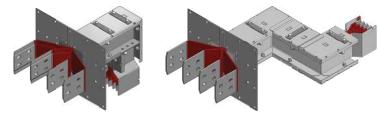
Additional elements:

Supplied with its pre-installed monobloc. Elements able to meet any installation requirement. Elements with S120 fire barrier Elements with phase balancing Elements with thermal expansion

Angle components:

Supplied with its pre-installed monobloc. Elements able to meet any change of direction with standard or special solutions. Elbows Double elbows Special T, X elements

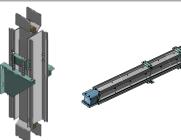
Tap-off boxes:


Elements used for connecting and energizing electric loads. Plug-in tap-off boxes from 63 A up to 630 A: (can be installed with busbar energized) - with 3P fuse holders - with switch disconnector and fuse holder

- Compatible with different brand of MCCB'S
- Bolt-on tap-off boxes from 800 A to 1250 A:
- with switch disconnector and fuse holder
- for DPX³ circuit breakers

Connection interfaces:

Elements used for connecting the busbar to the electric board or transformer.



Fixing supports:

Elements used for fixing the busbar to the structure of the building.

Options for horizontal installations Options for vertical installations Options for special applications like Seismic areas.

BAHRA TBS BUSWAY ADVANTAGES

Practicality

The electric design of the busbars is achieved in compliance with the product Standards. The rated current of our busbars is guaranteed at a room average temperature of 50 °C.

After choosing the busbar which is able to meet the operating current regulations, it will be very easy to verify the voltage drop as well as the protection against overcurrents by using the technical tables available for all our production lines.

In particular, these tables define a wide range of technical data which allow the planning engineer to carry out calculations with electric values, which are not estimated but the result of measurements made during heating and short circuit tests (in certified LOVAG laboratories), which have certified all product lines.

When using busbars, the load protection is located very close to the device (decentralized protection); Tap-off boxes can contain protection devices such as thermal magnetic circuit breakers, fuse carriers and motorized switches which allow you to easily and efficaciously manage the system.

Flexibility

By using the outlet windows located on the straight elements, the busbars provide high management flexibility, both when planning (electrical engineer) and when installing the system (installer); they are also used for the unavoidable changes required by the electric system to adapt to the varied needs of the end user during the life of plant.

The Tap-off boxes can be inserted and removed from their outlets when the busbar is electrically powered and inserted in another plug outlet, thus avoiding downtime.

No more point-point connections but only one power distribution system to which you will always be able to connect to wherever there is a free window.

Because of its flexibility and durability features Bahra TBS's busbar, installed inside a building, allows you to easily change the destination of its intended use of the rooms, thus giving also advantages to those who manage and locate the various parts of the building premises.

Quick installation

The busbar's junction and fixing systems have been designed and created to install busbars easily. In a cable and tray system, the time required to install only the tray is the same used to install a complete system in busbars.

Example of Bahra busbar system

Safety

A busbar does not use large amounts of insulating plastic material and potentially dangerous materials in case of fire.

Furthermore, the plastic materials used for the insulating parts of the busbars are always self-extinguishing (from V0 to V2) and the gas emission is generally very low (Halogen Free). Low electromagnetic emission is another advantage of the busbars as a result, the metal plate casing of the busbars serves as a screen for the electric field (shielded enclosure); the extreme vicinity between the phase conductors also reduces considerably the emission of the magnetic field.

The tests carried out on one of our 2500 A busbars at full operating current has shown that the emission of the magnetic field (magnetic induction) is lower than the "target level" of the Decree at a distance of 0.3m, whereas the threshold considered as the "quality target" can be achieved at a distance of only 0.7m from the busbar.

These features make our busbars the unavoidable choice for hospital facilities, data processing centres and wherever it is necessary to supply a large amount of power in the proximity of workplaces and/or sensitive equipments.

Reduced dimensions

The overall dimensions of the busbars are generally smaller than an equivalent system made with cables, especially when the currents to be carried exceed 1000A and when several cables in parallel are necessary to ensure such capacity.

Other advantages can be achieved when there are changes of direction where the radius of curvature of the cables is minimal and enough to not damage the insulating material; busbars allow you to change directions with 90° angles, thus optimizing the small spaces used in service areas.

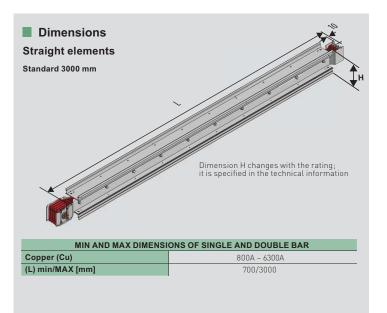
straight elements

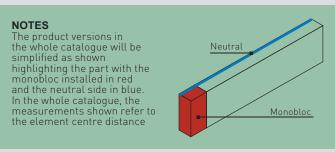
Straight elements for

T65280100 Cot Nos

Cat.Nos	Straight elements for transport	
Cu	In (A)	L (mm)
T65280100 T65280101 T65280103 T65280105 T65280106 T65280108 T65390105 T65390106 T65390108	800 1000 1250 2000 2500 3200 4000 5000	3000
T65280110 T65280111 T65280113 T65280115 T65280116 T65280118 T65390115 T65390116 T65390118	800 1000 1250 1600 2000 2500 3200 4000 5000	700-1000
T65280170 T65280173 T65280175 T65280175 T65280176 T65280178 T65390175 T65390176 T65390178	800 1000 1250 1600 2000 2500 3200 4000 5000	1001-1500
T65280120 T65280121 T65280123 T65280125 T65280126 T65280128 T65390125 T65390126 T65390128	800 1000 1250 1600 2000 2500 3200 4000 5000	1501-2000
T65280180 T65280181 T65280183 T65280185 T65280186 T65280188 T65390185 T65390186 T65390188	800 1000 1250 1600 2000 2500 3200 4000 5000	2001-2500
T65280150 T65280151 T65280155 T65280155 T65280156 T65280158 T65390155 T65390156 T65390158	800 1000 1250 1600 2000 2500 3200 4000 5000	2501-2999

* Item code will change for the special dimensions.


Compact BUSWAYS - HE


straight elements

Compact BUSWAYS – HE:

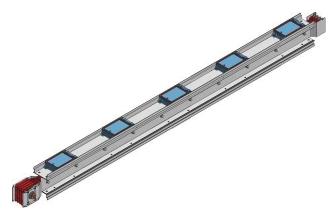
Reference standard: IEC 61439-6. Reference temperature: 50°C Protection degree: IP55*. Thickness of top cover: 2.5 mm and side casing 2 mm. No. of conductors: 4C, 4.5C or 5C. Painted: RAL 7035. Halogen Free. The insulation between bars is ensured by Epoxy class B (130°C)*. All plastic (Insulator) components have a V1 self-extinguishing degree (as per UL94); they are fire retardant and comply with the glow-wire test according to standards.

*IP65 / IP66 / Class F (155°C) Epoxy Insulation - available on request.

The range is also available on request in different versions: (5 Conductors with dedicated PE conductor, double neutral and more others...)

Current Density

BAR	STAN	DARD
B⊿	Ratings (A)	Density (A/mm2)
	800	2.60
	1000	3.05
щ	1250	3.03
SINGLE	1600	3.13
S	2000	2.83
	2500	2.77
щ	3200	2.50
DOUBLE	4000	2.49
ă	5000	2.42


Standard Rating

Double bar: 3200A-5000A (Cu)

straight elements (continued)

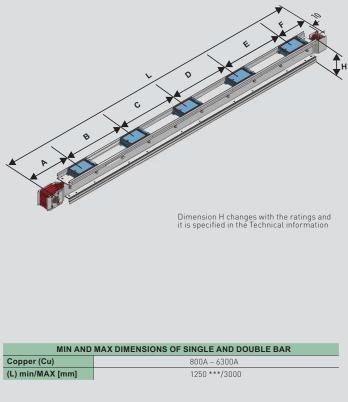
T65280130

Cat.Nos	Straight elements for distribution			
Cu	In (A)	N° outlets	L (mm)	
T65280130 T65280131 T65280133 T65280135 T65280136 T65280138 T65390135 T65390136 T65390138	800 1000 1250 1600 2000 2500 3200 4000 5000	3+3 **	3000	
T65280970 T65280971 T65280973 T65280975 T65280976 T65280978 T65390975 T65390976 T65390978	800 1000 1250 1600 2000 2500 3200 4000 5000	1+1	1000-1500	
T65280920 T65280921 T65280923 T65280925 T65280926 T65280928 T65390925 T65390926 T65390928	800 1000 1250 1600 2000 2500 3200 4000 5000	2+2 **	1501-2000	
T65280980 T65280981 T65280983 T65280985 T65280986 T65280988 T65390985 T65390986 T65390988	800 1000 1250 1600 2000 2500 3200 4000 5000	2+2 **	2001-2500	
T65280950 T65280951 T65280953 T65280955 T65280956 T65280958 T65390955 T65390956 T65390958	800 1000 1250 1600 2000 2500 3200 4000 5000	3+3 **	2501-2999	

Compact BUSWAYS - HE

straight elements (continued)

Dimensions

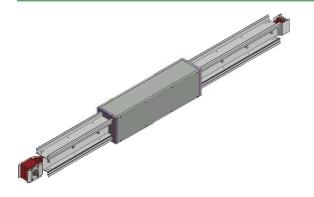

Straight elements for distribution

- Straight elements for plug-in type tap-off boxes

- Standard 3000 mm Tap-off outlets on both sides

Straight elements enable the application of plug-in boxes on appropriate outlets

Available in lengths from 1 to 3 meters, these elements have respectively 3+3 (with 870 pitch and 5+5 (with 580 pitch).

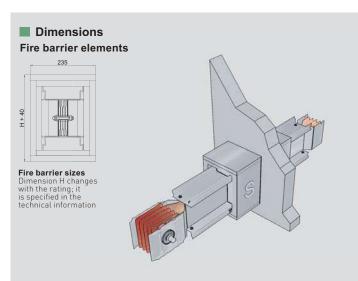


(***)For the length from 1000 mm to 1250 mm is possible to install only plug-in boxes Type 1 and 3 From 1250 mm to 3000 mm is possible to install all types of plug-in boxes Compatible boxes are listed in dedicated chapter

(**) at request is possible to have others combinations of outlets: lenght: 1000÷3000 - outlets: [1+1] lenght: 1501÷3000 - outlets: [1+1] and [2+2] lenght: 2501÷3000 - outlets: [1+1],[2+2] and [3+3] lenght: 3000 - outlets: [1+1],[2+2],[3+3] and [5+5] Possibility to have outlets in special position

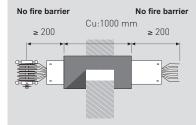
straight elements

T652EFB51


Fire barrier elements S120 Cat.Nos (EN 1366-3, DIN 4102-09) When the busbar trunking system crosses fire resistant walls or ceilings, it must be fitted with appropriate fire barriers The fire barrier is 1000 mm (Cu) long and must always be positioned in the middle of the fire resistant wall or ceiling crossed by the busbar. After crossing fire resistant walls or ceilings, any cavity must be sealed with material meeting current regulations for the required building fire resistance class Cu In (A)

T652EFB51	B120 4C	800-1250	
T652EFB52	B160 4C	1600	
T652EFB53	B190 4C	2000	external
T653EFB51	2B120 4C	2500 3200	
T653EFB52	2B160 4C	4000	
T653EFB53	2B190 4C	5000	

Туре


Compact BUSWAYS - HE

straight elements

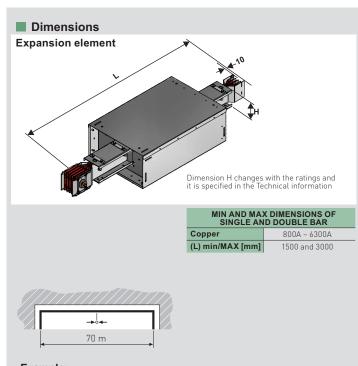
In order to ensure the maximum resistance class, for some fire barrier following the indications on the table It is therefore necessary to fit at the factory an internal fire barrier following the indications on the table It is therefore necessary to indicate at the order stage what elements will cross fire resistant walls or ceilings

Figure 1

Figure 2

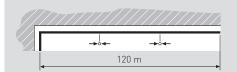
No fire barrier Cu:1000 mm ≥ 200

The external fire barrier can be used on any trunking component in compliance with the operating instructions specified in figures 1 and 2 $\,$ Fire rated Busway available upon customer request.

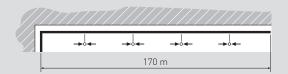


straight elements (continued)

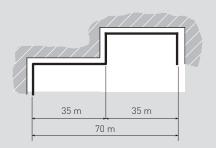
-	straight eter		
			T65280290
	Cat.Nos	Expansion elem	nent
		Due to being subje temperature chang suffer thermal exp The expansion eler absorb expansion - of both the busbar up to the maximum length (50 mm app The expansion eler fitted near the exp of the building and sections of the line or vertical) longer For straight line se longer than 40 m, elements must be that splits the path sections of the inst that applies the section sections of the inst than 40 m; in this case i	cted to ges, both building ansions ment can and contraction trunking d the building, n permitted prox.) ment must be ansion joints in straight e (horizontal and/ than 40 m setions expansion fitted in a way into equal r than 40 m rstam elements mpensate for if the straight tallation are less mo expansion
	Cu	In (A)	Type
	T65280200 T65280201 T65280203 T65280205 T65280206 T65280208 T65390205 T65390206 T65390208	800 1000 1250 1600 2000 2500 3200 4000 5000	L = 1.5 m Ideal for rising mains installation
	T65280290 T65280291 T65280293 T65280295 T65280296 T65280298 T65390299 T65390296 T65390298	800 1000 1250 1600 2000 2500 3200 4000 5000	L = 3 m Ideal for horizontal installations


Compact BUSWAYS - HE

straight elements (continued)

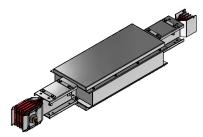


Example:


Straight section lenght 70 m = n°1 expansion element in the center of the line

Example: Straight section lenght 120 m = $n^{\circ}2$ expansion elements, one every 40 m

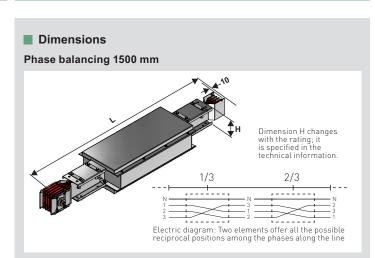
Example: Straight section length 170 m = no. 4 expansion elements, one every 34 m



Example:

Section length 70 m. When the section is not straight, no expansion element is necessary

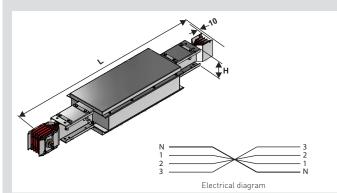
straight elements (continued)


T65287100

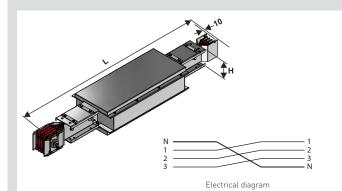
	_	
Cat.Nos	Phas	e balancing
Cu 165287100 165287103 165287105 165287106 165287108 165397105 165397108	In (A) 800 1000 1250 1600 2000 2500 3200 4000 5000	Straight elements with phase balancing are used to reduce and balance mutual phase reactance and impedance in case of long lines. In particularly long sections (→ 100 metres) it is recommended that two transposition elements are fitted (one at one third and one at two thirds of the path), to balance the system electric impedance: In this way, it will be possible to have along the installation path all the possible combination, of reciprocal positions among phases, minimising load losses
	Phas	e inversion
Cu 765287120 765287121 765287123 765287125 765287126 765397125 765397126 765397128	In (A) 800 1000 1250 1600 2000 2500 3200 4000 5000	The function of this element is to completely reverse the positions of the phases and the neutral. It is normally used in connections between transformer and electric board, or in the connections between electric boards, when the starting sequence is different from the arrival sequence
	Elem	ent with Neutral rotation
Cu T65287140 T65287141 T65287143 T65287145 T65287146 T65287148 T65397145 T65397146	In (A) 800 1000 1250 1600 2000 2500 3200 4000	The straight element with Neutral rotation is used to adapt the sequence of the busbar phases to the sequence of the connections required at the ends of the connections, should these be different. In the connection between electric boards, the neutral jump is normally used, as only the neutral position is normally identified

T65397148 5000

Compact BUSWAYS - HE

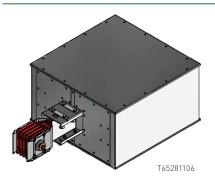

straight elements (continued)

In particularly long carrying sections (\rightarrow 100 meters) it is recommended to insert 2 elements always by 2: (one placed at 1/3 and one placed at 2/3 of the trunking path) to balance the electric impedance of the system


For example, in a line exceeding 300 m it is recommended that one phase transposition is fitted at 100 m, and another one at 200 m

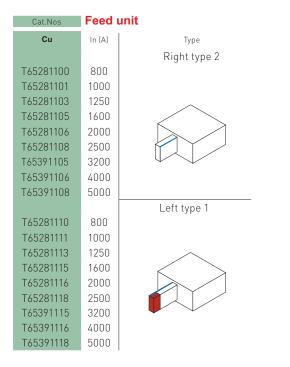
Phase Inversion 1500 mm

Warning: Use ONLY these elements for transport, and not for derivations (not use it when the line includes straight elements with derivations, or when they are provided for tap-off boxes even if bolted on the junction) The position of all the conductors, including the neutral, changes, and may cause serious problems on a connected load, if one is not fully aware that the phase sequence and the position of the neutral DO NOT comply with those indicated in the pre-printed labels


Element with neutral rotation 1500 mm

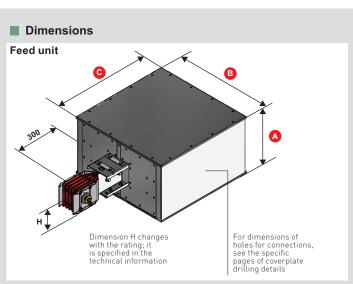
When the sequence of the distribution board phases is different from that of the transformer, it is possible to use an element that allows a neutral rotation

feed unit


The feed units are used at the end of the lines, when the busbar must be powered using cables. They are available in the right (without Monobloc) and left (with Monobloc fitted) version On request they are available with non-standard execution End feed units for single bar busbars are supplied with an Aluminum

blind back closing plate For double bar busbar trunking systems the plates are 2

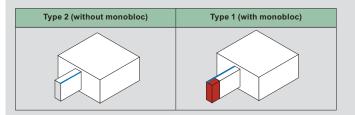
Both versions are fitted with 2 extra side steel flanges and 2 inspection


Steel flanges (dark grey colour) The cable is connected directly to the busbars using bolts. For more information on board/busbar connection see the tables below (Dimensions For The Box)

To feed the power supply cable through the back power supply flanges it will be necessary to drill a hole in case of single bar and two holes in case of double bar.

Compact BUSWAYS - HE

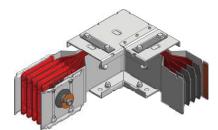
feed unit



Rear cable input

Aluminum gland plate for cable entry 170 x 410 mm for Single Bar. Aluminum gland plate for cable entry 400 x 400 mm(3x) for Double Bar.

Dimensions FOR THE BOX			
Cu 800A÷1250A		1600A÷2500A	3200÷5000A
(A) [mm]	350	350	630
(B) [mm]	610	610	610
(C) [mm]	610	810	810

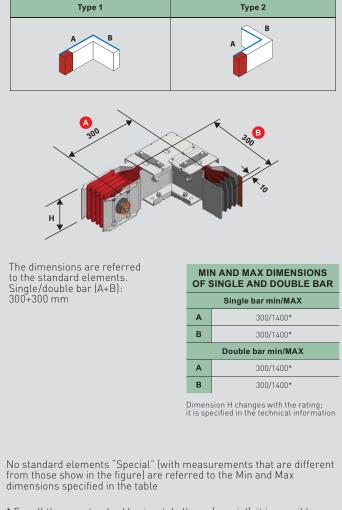

Special dimensions (not standard) are available on request, please contact Bahra TBS

CONNECTIONS				
Load (A)	The Copper (Cu) phase section is rounded up (mm²)	section is holes for cables that can be		at can be
800	600	4	4x150	2x300
1000				
1250	700	4	4x240	3x300
1600	850	8	4x240	3x300
2000	1100	8	5x240	4x300
2500	1400	8	6x240	5x300
3200	1700	16	8x240	6x300
4000	2100	16	9x240	7x300
5000	3000	16	14x240	10x300

elbows

T65280300

Cat.Nos Horizontal elbow				
Cu	In (A)	Туре	Туре	
T65280300	800			
T65280301 T65280303	1000 1250			
T65280303	1250			
T65280306	2000		Standard	
T65280308	2500			
T65390305	3200			
T65390306	4000	\sim		
T65390308	5000			
T65280320	800	Disht Turs 1		
T65280321	1000	Right Type 1		
T65280323	1250			
T65280325	1600		Special	
T65280326	2000		Special	
T65280328	2500			
T65390325	3200			
T65390326	4000			
T65390328	5000			
T65280310	800			
T65280311	1000			
T65280313	1250			
T65280315	1600		Chan da ad	
T65280316	2000		Standard	
T65280318	2500			
T65390315	3200	\sim		
T65390316	4000			
T65390318	5000			
T65280330	800			
T65280331	1000	Left Type 2		
T65280333	1250			
T65280335	1600		Special	
T65280336	2000		opeciat	
T65280338	2500			
T65390335	3200			
T65390336	4000			

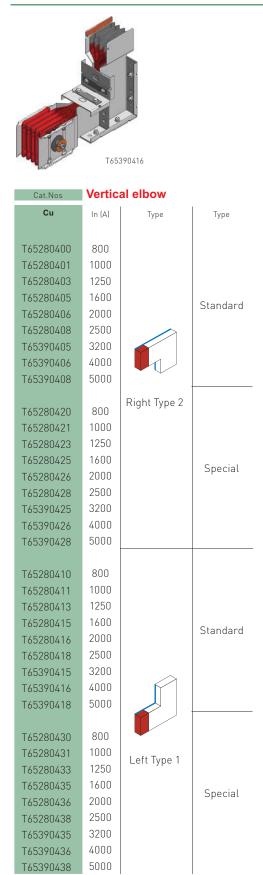

Compact BUSWAYS - HE

elbows

Dimensions

Horizontal elbow

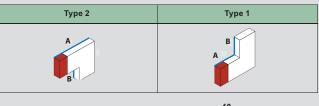
In order to define the type of horizontal elbow required, consider to place the element "edgewise" (conductors perpendicular to the ground). In this configuration "horizontal" elbows enable a path variation parallel to the ground When the neutral busbar conductor faces the outside of the elbow, there will be a Right horizontal elbow (type 1) Contrariwise, with the neutral busbar conductor facing the inside of the elbow there will be a Left horizontal elbow (type 2)

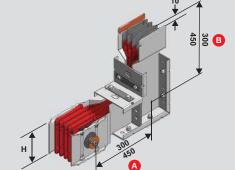


* For all the non standard horizontal elbows (special), it is possible to have only one of the two sides in size exceeding 600 mm. For example, when ordering an horizontal elbow with size A=650 mm, the B size will have to be \leq 600 mm

T65390338 5000

elbows (continued)


Compact BUSWAYS - HE


elbows (continued)

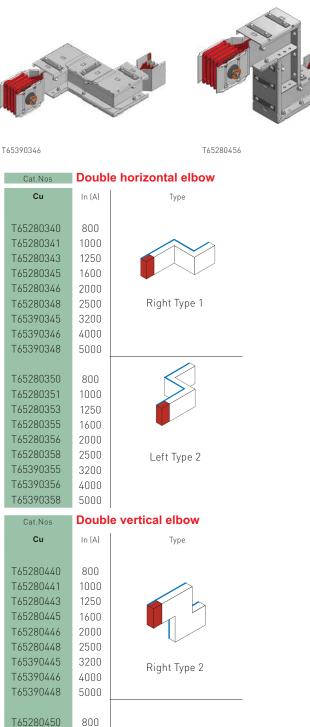
Dimensions

Vertical elbow

In order to define the type of vertical elbow, it is necessary to still place the element "edgewise" (conductors perpendicular to the ground), with the section with Monobloc facing the observer and the section without facing up. In this configuration, vertical "elbows" enable an up or down facing variation If the neutral is on the left side, there will be a left vertical elbow (Type 1). If, on the other side, it is on the right side, there will be a right vertical elbow (Type 2)

The dimensions are referred to the standard elements single bar (A+B) : 300+300 mm double bar (A+B) : 450+450 mm

MIN AND MAX DIMENSIONS OF SINGLE AND DOUBLE BAR					
Single bar min/MAX					
Α	300/1400*				
В	300/1400*				
	Double bar min/MAX				
Α	450/1400*				
в	450/1400*				
	1				

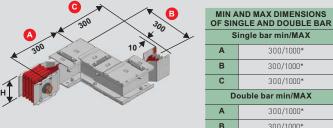

Dimension H changes with the rating; it is specified in the technical information

No standard elements "Special" (with measurements that are different from those show in the figure) are referred to the Min and Max dimensions specified in the table

* For all the non standard vertical elbows (special), it is possible to have only one of the two sides in size exceeding 500 mm For example, when ordering a vertical elbow with size A=650 mm, the B size will have to be \leq 500 mm

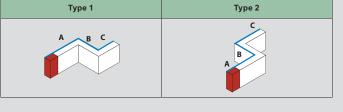
elbows (continued)

Left Type 1

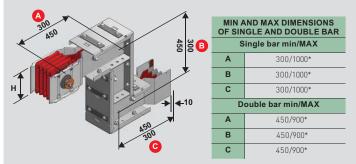

Compact BUSWAYS - HE

elbows (continued)

Dimensions


Double horizontal elbow

Double horizontal elbows are the union of two horizontal elbows; in order to define the type, it is enough to observe them starting from the Monobloc; if the first elbow met is left, we will have a double horizontal elbow left + right [Type 2]. Contrariwise, if the first elbow met is right, we will have a double horizontal elbow right + left (Type 1)


300/1000* в 300/1000* С 300/1000* Dimension H changes with the rating; it is specified in the technical information

The dimensions are referred to the standard elements Single/double bar (A+B+C): 300+300+300 mm

Double vertical elbow

Double vertical elbows are the union of two vertical elbows; in order to define the type, it is enough to observe them starting from the Monobloc; if the first elbow met is left, we will have a double vertical elbow left + right (Type 1). Contrariwise, if the first elbow met is right, we will have a double vertical elbow right + left (Type 2)

Dimension H changes with the rating; it is specified in the technical information

The dimensions are referred to the standard elements. Single bar (A+B+C): 300+300+300 mm Double bar (A+B+C): 450+450+450 mm

Туре 2	Туре 1
A B C	B

No standard elements "Special" (with measurements that are different from those show in the figure) are referred to the Min and Max dimensions specified in the table

* For all the non standard double Horizontal or double Vertical elbows (special), it is possible to have only one of the three sides in size exceeding 500 mm

For example, when ordering a double horizontal or double vertical elbow with size A=650 mm, the B and C size will have to be ≤ 500 mm

T65280451

T65280443

T65280445

T65280446

T65280448

T65390445

T65390446

T65390448

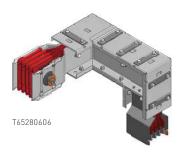
1000

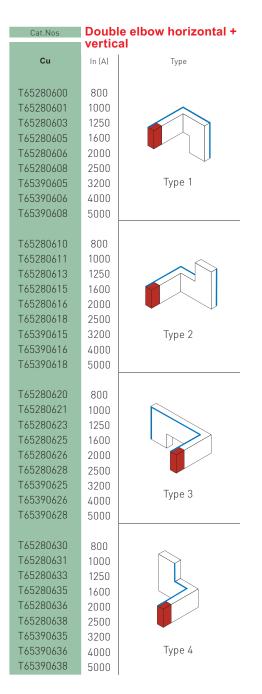
1250

1600

2000

2500


3200

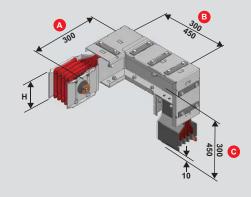

4000

5000

elbows (continued)

Compact BUSWAYS - HE

elbows (continued)


Dimensions

Double elbow horizontal + vertical

Double elbows horizontal + vertical are the union of a horizontal and a vertical elbow, placed in succession starting from the side with Monobloc

Depending on the type of elbows, the double horizontal + vertical elbow may be of four different types: Double elbow Horizontal RH + Vertical RH (Type 1) Double elbow Horizontal RH + Vertical LH (Type 2) Double elbow Horizontal LH + Vertical RH (Type 3) Double elbow Horizontal LH + Vertical LH (Type 4)

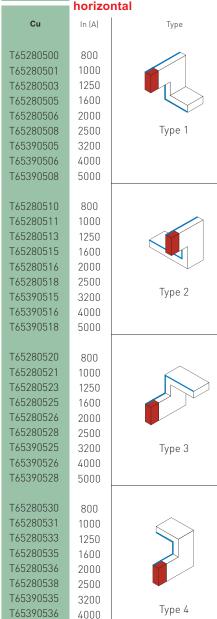
Туре 1	Туре 2	Туре 3	Туре 4
C C	A B c	C B A	C B A

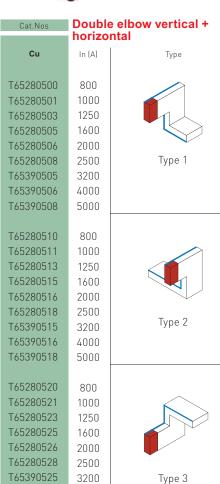
The dimensions are referred to the standard elements Single bar (A+B+C): 300+300+300 mm double bar (A+B+C): 300+450+450 mm

MIN AND MAX DIMENSIONS OF SINGLE AND DOUBLE BAR		
Single bar min/MAX		
А	300/800*	
В	300/800*	
С	300/800*	
Double bar min/MAX		
А	300/800*	
В	450/600*	
С	450/600*	

Dimension H changes with the rating; it is specified in the technical information

No standard elements "Special" (with measurements that are different from those show in the figure) are referred to the Min and Max dimensions specified in the table


* For all the non standard double H+V elbow (special), it is possible to have only one of the three sides in size exceeding 450 mm For example, when ordering a horizontal + vertical elbow with size A=650 mm, the B and C size will have to be \leq 450 mm


Note: RH - Right LH - Left

Compact BUSWAYS - HE elbows (continued)

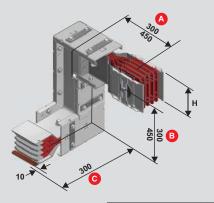
T65280506

Type 4

Compact BUSWAYS - HE

elbows (continued)

Dimensions


Double elbow vertical + horizontal

The dimensions are referred to

Double elbows vertical + horizontal are the union of a vertical and a horizontal elbow, placed in succession starting from the side with Monobloc

Depending on the type of elbows, the double vertical + horizontal elbow may be of four different types: • Double elbow vertical RH + horizontal RH [Type 1] • Double elbow vertical RH + horizontal LH [Type 2] • Double elbow vertical LH + horizontal RH [Type 3] • Double elbow vertical LH + horizontal LH [Type 4]

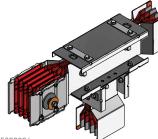
- Type 1 Type 2 Type 3 Type 4

MIN AND MAX DIMENSIONS OF SINGLE AND DOUBLE BAR the standard elements. Single bar (A+B+C): 300+300 mm Double bar (A+B+C): 450+450+300 mm Single bar min/MAX 300/800* Α в 300/800* С 300/800* Double bar min/MAX Α 450/600* в 450/600* С 300/800*

Dimension H changes with the rating; it is specified in the technical information

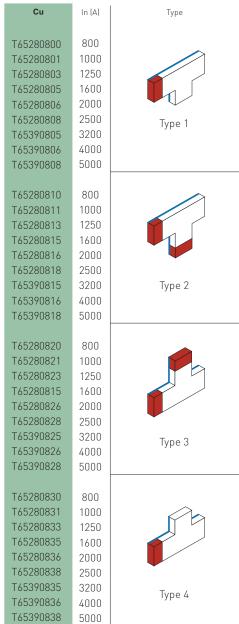
No standard elements "Special" (with measurements that are different from those show in the figure) are referred to the Min and Max dimensions specified in the table

* For all the non standard double V+H elbows (special), it is possible to have only one of the three sides in size exceeding 450 mm For example, when ordering a double vertical + horizontal elbow with size A=650 mm, the B and C size will have to be ≤ 450 mm



T65390538

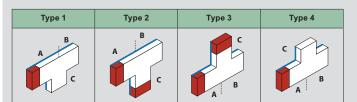
5000

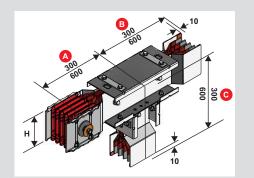


Compact BUSWAYS - HE T elements

T65280806

Cat.Nos Vertical T element


Compact BUSWAYS - HE


T elements

Dimensions

Vertical T element

T-elements can be used to split the line in two branches, adding together the effect of two diverging elbows There are four types of verticals "T" elements, as shown below

The dimensions are referred to the standard elements Single bar (A+B+C): 300+300 mm Double bar (A+B+C): 600+600+600 mm

MIN AND MAX DIMENSIONS OF

SINGLE AND DOUBLE BAR		
Single bar min/MAX		
300/1400*		
300/1400*		
300/700*		
Double bar min/MAX		
300/1400*		
300/1400*		
450/600*		

Dimension H changes with the rating; it is specified in the technical information

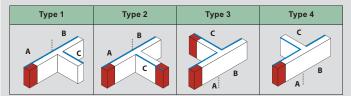
No standard elements "Special" (with measurements that are different from those show in the figure) are referred to the Min and Max dimensions specified in the table

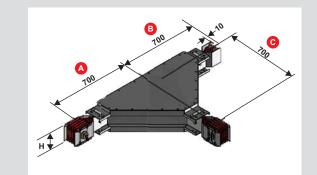
* For all the non standard Vertical T elements (special), it is possible to have only one of the three sides in size exceeding 600 mm. For example, when ordering a T vertical element with size A=650 mm, the B and C size will have to be \leq 600 mm

Compact BUSWAYS - HE T elements (continued)

T65280706

Cat.Nos	Horizo	ntal T element
Cu	In (A)	Туре
T65280700 T65280701 T65280703 T65280705 T65280706 T65280708 T65390705 T65390706	800 1000 1250 1600 2000 2500 3200 4000	Type 1
T65390708	5000	
T65280710 T65280711 T65280713 T65280715 T65280716 T65280718 T65390715 T65390716 T65390718	800 1000 1250 1600 2000 2500 3200 4000 5000	Type 2
T65280720 T65280721 T65280723 T65280725 T65280726 T65280728 T65390725 T65390726 T65390728	800 1000 1250 1600 2000 2500 3200 4000 5000	Type 3
T65280730 T65280733 T65280733 T65280735 T65280736 T65280738 T65390735 T65390736 T65390738	800 1000 1250 1600 2000 2500 3200 4000 5000	Type 4


Compact BUSWAYS - HE


T elements (continued)

Dimensions

Horizontal T element

T-elements can be used to split the line in two branches, adding together the effect of two diverging elbows There are four types of horizontal "T" elements, as shown below

The dimensions are referred to the standard elements. Single/double bar (A+B+C): 600+600+600 mm

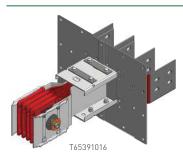
MIN AND MAX DIMENSIONS OF SINGLE AND DOUBLE BAR		
Single bar min/MAX		
А	700/700*	
В	700/700*	
С	700/700*	
Double bar min/MAX		
Α	700/700*	

Dimension H changes with the rating; it is specified in the technical information

B C 700/700*

700/700*

No standard elements "Special" (with measurements that are different from those show in the figure) are referred to the Min and Max dimensions specified in the table

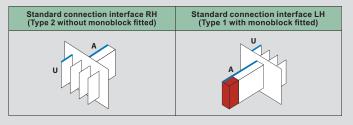

* For all the non standard Horizontal T elements (special), it is possible to have only one of the three sides in size exceeding 600 mm. For example, when ordering a T horizontal element with size A=650 mm, the B and C size will have to be ≤ 600 mm

Note:

Only in special cases, where is not possible to use the standard element, is possible to have only one of three arms with minimum dimension of 300mm. For more information please contact Bahra TBS

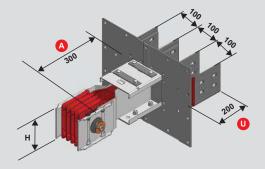
connection interfaces with exit bars

Cat.Nos	Conne exit ba	ction interfa	ces with
Cu	In (A)	Туре	Туре
T65281000	800		
T65281001	1000		
T65281003	1250		
T65281005	1600		
T65281006	2000		Standard
T65281008	2500		
T65391005	3200		
T65391006	4000		
T65391008	5000		
		41	
T65281020	800		
T65281021	1000	Right Type 2	
T65281023	1250		
T65281025	1600		Special
T65281026	2000		Special
T65281028	2500		
T65391025	3200		
T65391026	4000		
T65391028	5000		
T65281010	800		
T65281010	1000		
T65281013	1250		
T65281015	1600		Standard
T65281016	2000		Standard
T65281018	2500		
T65391015	3200	× •	
T65391016	4000		
T65391018	5000		
			<u> </u>
T65281030	800		
T65281031	1000	Left	
T65281033	1250	Type 1	
T65281035	1600		Special
T65281036	2000		Sheciar
T65281038	2500		
T65391035	3200		
T65391036	4000		
T65391038	5000		


Compact BUSWAYS - HE

connection interfaces with exit bars

Dimensions


Connection interfaces with exit bars

Standard connection interfaces are used at the end of the lines to connect the busbar to boards or transformers. They are available in the right (without Monobloc) and left (with Monobloc fitted) version. The drawings below refer to the standard versions. Different executions are available on request (e.g.: length, centre distance between bar conductors, drilling, etc.)

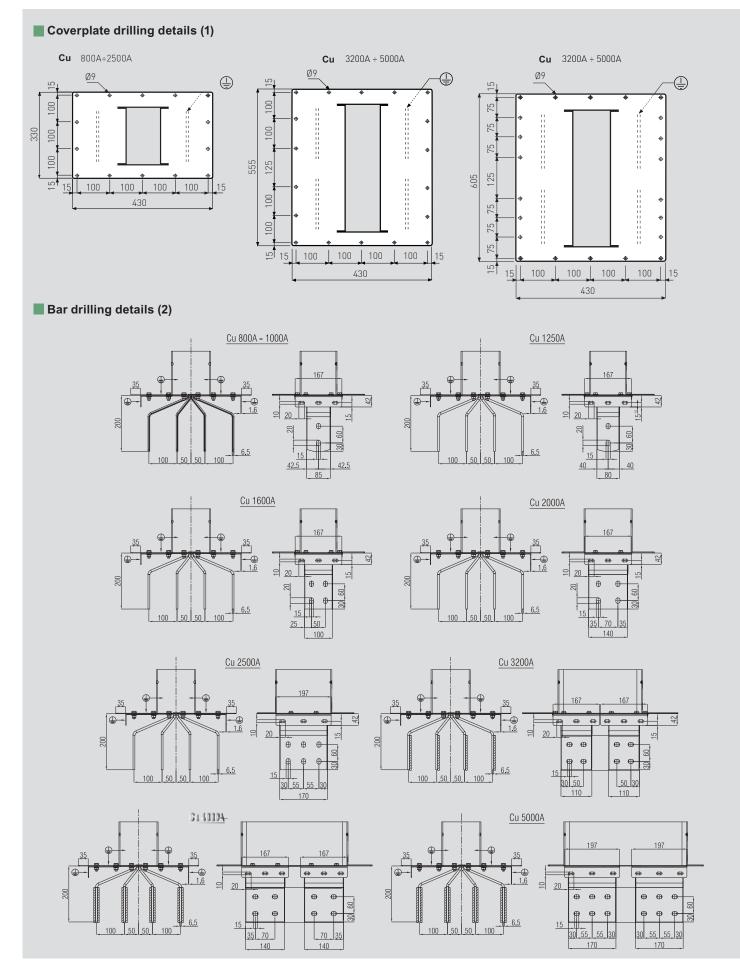
Note: RH - Right LH - Left

Standard connection interface

The dimensions are referred to the standard elements. Single/double bar (U+A): 200+300 mm

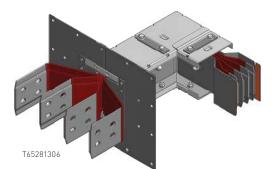
See on page 60 the drawings with
all drilling details for dimensions
of coverplate (1) and bars (2)

MIN AND MAX DIMENSIONS OF SINGLE AND DOUBLE BAR		
Single bar min/MAX		
U	200	
Α	300/1400	
Double bar min/MAX		
U	200	
Α	300/1400	

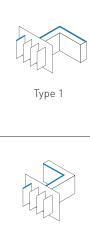

Dimension H changes with the rating; it is specified in the technical information

No standard elements "Special" (with measurements that are different from those show in the figure) are referred to the Min and Max dimensions specified in the table

On request is available the busbar connection interface with exit bars for range:



dimensions


connection interfaces with exit bars + horizontal elbow

Connection interfaces with Cat.Nos exit bars + horizontal elbow Cu In (A) T65281300 800 T65281301 1000 T65281303 1250 T65281305 1600 T65281306 2000 T65281308 2500 T65391305 3200 T65391306 4000 T65391308 5000 T65281310 800 T65281311 1000 T65281313 1250 T65281315 1600 T65281316 2000 T65281318 2500 T65391315 3200 T65391316 4000 T65391318 5000 T65281320 800 T65281321 1000 T65281323 1250 T65281325 1600 T65281326 2000 T65281328 2500 T65391325 3200 T65391326 4000 T65391328 5000 T65281330 800 T65281331 1000 T65281333 1250 T65281335 1600 T65281336 2000 T65281338 2500 T65391335 3200 T65391336 4000

T65391338

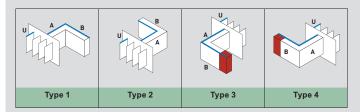
5000

Type

Type 2

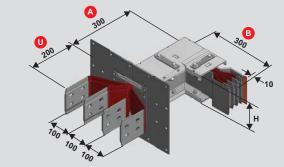
Type 3

Type 4


Compact BUSWAYS - HE

connection interfaces with exit bars + horizontal elbow

Dimensions


Connection interfaces with exit bars + horizontal elbow

This element is the union of a connection interface with exit bars and a horizontal elbow

The dimensions are referred to the standard elements

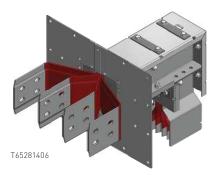
Single/double bar (U+A+B): 200+300+300 mm

MIN AND MAX DIMENSIONS OF SINGLE AND DOUBLE BAR		
	Single bar min/MAX	
U	200	
Α	300/1000*	
В	300/1000*	
Double bar min/MAX		
U	200	
А	300/1000*	
В	300/1000*	

See on page 60 the drawings with all drilling details for dimensions of coverplate (1) and bars (2)

Dimension H changes with the rating; it is specified in the technical information

No standard elements "Special" (with measurements that are different from those show in the figure) are referred to the Min and Max dimensions specified in the table


* For all the non standard connection interface with exit bars + horizontal elbows (special), it is possible to have only one of the two sides in size exceeding 600 mm For example, when ordering an interface with exit bars + horizontal elbow with size A=650 mm, the B size will have to be < 600 mm

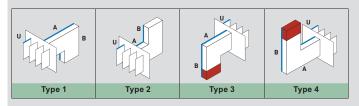
Cat.Nos

Compact BUSWAYS - HE connection interfaces with exit bars + vertical elbow

Connection interfaces with

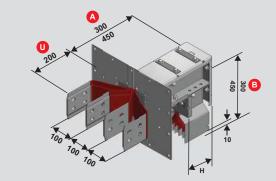
exit bars + vertical elbow Cu In (A) T65281400 800 T65281401 1000 T65281403 1250 T65281405 1600 T65281406 2000 T65281408 2500 T65391405 3200 T65391406 4000 T65391408 5000 T65281410 800 T65281411 1000 T65281413 1250 T65281415 1600 T65281416 2000 T65281418 2500 T65391415 3200 T65391416 4000 T65391418 5000 T65281420 800 T65281421 1000 T65281423 1250 T65281425 1600 T65281426 2000 T65281428 2500 T65391425 3200 T65391426 4000 T65391428 5000 T65281430 800 T65281431 1000 T65281433 1250 T65281435 1600 T65281436 2000 T65281438 2500 T65391435 3200 T65391436 4000

Туре З


Type 4

Compact BUSWAYS - HE

connection interfaces with exit bars + vertical elbow


Dimensions

Connection interfaces with exit bars + vertical elbow This element is the union of a connection interface with exit bars and a vertical elbow

The dimensions are referred to the standard elements

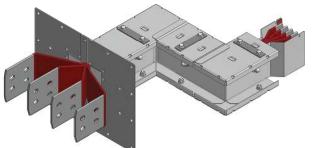
Single bar (U+A+B): 200+300+300 mm Double bar (U+A+B): 200+450+450 mm

MIN AND MAX DIMENSIONS OF SINGLE AND DOUBLE BAR		
	Single bar min/MAX	
U	200	
Α	300/1400*	
В	300/1400*	
Double bar min/MAX		
U	200	
Α	450/1000*	
В	450/1000*	

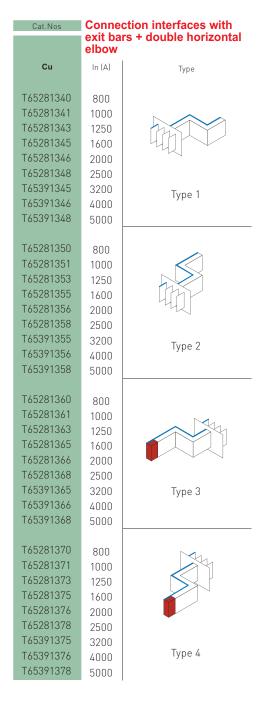
See on page 60 the drawings with all drilling details for dimensions of coverplate (1) and bars (2)

Dimension H changes with the rating; it is specified in the technical information

No standard elements "Special" (with measurements that are different from those show in the figure) are referred to the Min and Max dimensions specified in the table

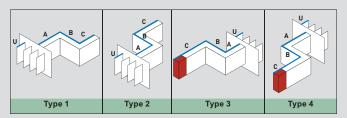

* For all the non standard connection interface with exit bars + vertical elbows (special), it is possible to have only one of the two sides in size exceeding 600 mm For example, when ordering an interface with exit bars + vertical elbow with size A=650 mm, the B size will have to be \leq 600 mm

T65391438


5000

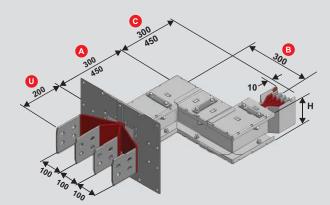
connection interfaces with exit bars + double horizontal elbow

T65281346


Compact BUSWAYS - HE

connection interfaces with exit bars + double horizontal elbow

Dimensions

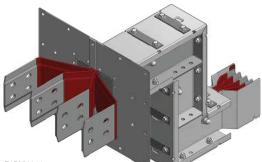

Connection interfaces with exit bars + double horizontal elbow This element is the union of a connection interface

with exit bars and a two horizontal elbows

The dimensions are referred to the standard elements

Single bar (U+A+B+C): 200+300+300+300 mm Double bar (U+A+B+C): 200+450+300+450 mm

MIN AND MAX DIMENSIONS OF SINGLE AND DOUBLE BAR		
Single bar min/MAX		
U	200	
Α	300/1000	
в	300/1000	
С	300/700	
	Double bar min/MAX	
U	200	
Α	300/1000	
в	300/1000	
С	300/700	


See on page 60 the drawings with all drilling details for dimensions of coverplate (1) and bars (2)

Dimension H changes with the rating; it is specified in the technical information

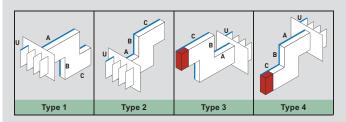
No standard elements "Special" (with measurements that are different from those show in the figure) are referred to the Min and Max dimensions specified in the table

connection interfaces with exit bars + double vertical elbow

T65281446

T65391478

5000


Cat.Nos		ction interfaces with
	elbow	rs + double vertical
Cu	In (A)	Туре
T65281440	800	\sim
T65281441	1000	
T65281443	1250	
T65281445	1600	
T65281446	2000	
T65281448	2500	Type 1
T65391445	3200	
T65391446	4000	
T65391448	5000	
T65281450	800	
T65281451	1000	
T65281453	1250	
T65281455	1600	
T65281456	2000	- HU
T65281458	2500	
T65391455	3200	Type 2
T65391456	4000	
T65391458	5000	
T65281460	800	
T65281461	1000	
T65281463	1250	
T65281465	1600	
T65281466	2000	
T65281468	2500	Ŧ
T65391465	3200	Туре З
T65391466	4000	
T65391468	5000	
T65281470	800	~ *
T65281471	1000	
T65281473	1250	
T65281475	1600	
T65281476	2000	
T65281478	2500	Ŧ
T65391475	3200	Type 4
T65391476	4000	

Compact BUSWAYS - HE

connection interfaces with exit bars + double vertical elbow


Dimensions

Connection interfaces with exit bars + double vertical elbow This element is the union of a connection interface with exit bars and a two vertical elbows

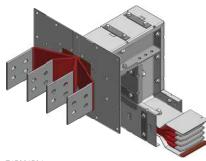
The dimensions are referred to the standard elements

Single bar (U+A+B+C): 200+300+300+300 mm Double bar (U+A+B+C): 200+450+450+450 mm

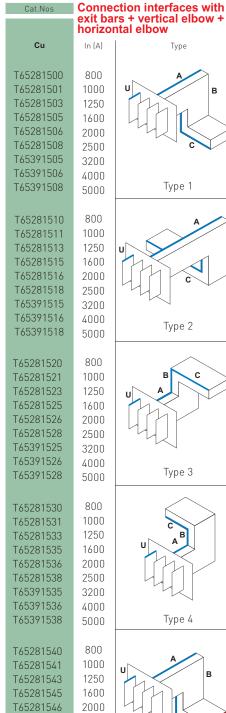
MIN AND MAX DIMENSIONS OF SINGLE AND DOUBLE BAR		
	Single bar min/MAX	
U	200	
Α	300/1000	
В	300/1000	
С	300/1000	
Double bar min/MAX		
U	200	
Α	300/1000*	
В	450/900*	
С	450/900*	

See on page 60 the drawings with all drilling details for dimensions of coverplate (1) and bars (2) Dimension H changes with the rating; it is specified in the technical information

No standard elements "Special" (with measurements that are different from those show in the figure) are referred to the Min and Max dimensions specified in the table


* For all the non standard connection interface with exit bars + double vertical elbows (special), it is possible to have only one of the three sides in size exceeding 600 mm For example, when ordering a connection interface with exit bars + double vertical elbow with size C=650 mm, the A and B size will have

to be ≤600 mm


28

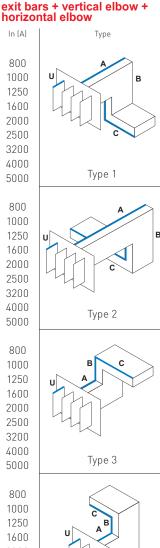
connection interfaces with exit bars + vertical elbow + horizontal elbow

T65281506

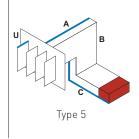
T65281548

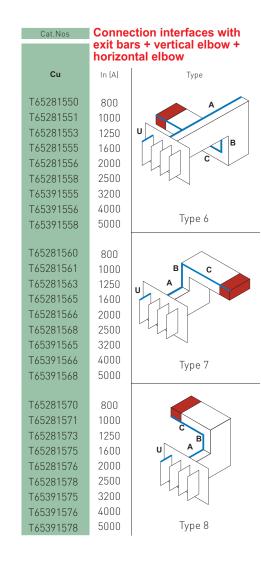
T65391545

T65391546

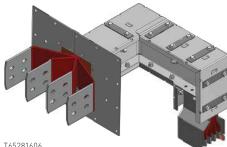

T65391548

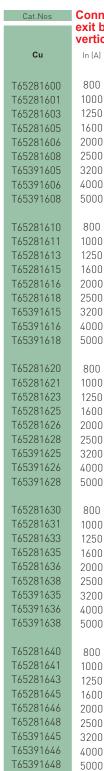
2500

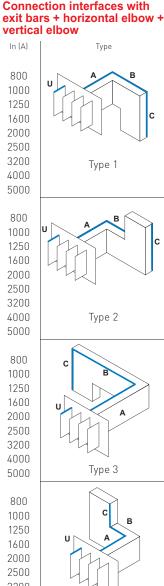

3200


4000

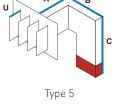
5000

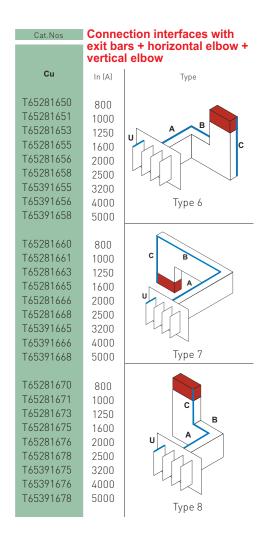


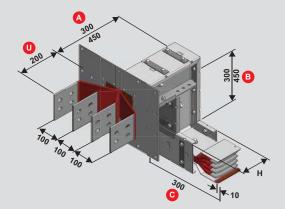




connection interfaces with exit bars + horizontal elbow + vertical elbow




T65281606


Compact BUSWAYS - HE

connection interfaces with exit bars + vertical elbow + horizontal elbow connection interfaces with exit bars + horizontal elbow + vertical elbow

Dimensions

Connection interfaces with exit bars + vertical elbow + horizontal elbow

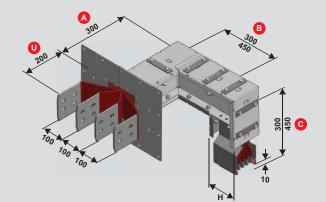
This element is the union of a connection interface with exit bars and a vertical and horizontal elbow

The dimensions are referred to the standard elements. Single bar (U+A+B+C): 200+300+300+300 mm Double bar (U+A+B+C) 200+450+450+300 mm

MIN AND MAX DIMENSIONS OF SINGLE AND DOUBLE BAR				
Single bar min/MAX				
U	200			
Α	300/600			
В	300/800			
С	300/800			
Do	Double bar min/MAX			
U	200			
Α	450/450*			
В	450/450*			
С	300/800*			

See on page 60 the drawings with all drilling details for dimensions of coverplate (1) and bars (2)

Dimension H changes with the rating; it is specified in the technical information


No standard elements "Special" (with measurements that are different from those show in the figure) are referred to the Min and Max dimensions specified in the table

* For all the non standard connection interface with exit bars + vertical elbows + horizontal elbow (special), it is possible to have only one of the three sides in size exceeding 450 mm. For example, when ordering a connection interface with exit bars + vertical elbow + horizontal elbow with size C=650 mm, the A and B size will have to be ≤ 450 mm

Dimensions

Connection interfaces with exit bars + horizontal elbow + vertical elbow

This element is the union of a connection interface with exit bars and a horizontal and vertical elbow

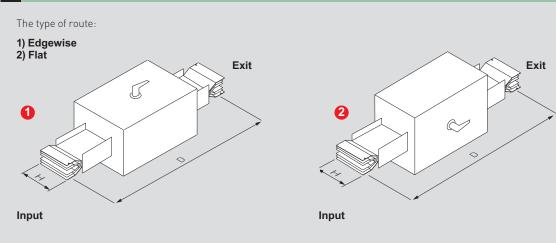
The dimensions are referred to the standard elements. Single bar (U+A+B+C): 200+300+300 mm Double bar (U+A+B+C) 200+300+450+450 mm

MIN AND MAX DIMENSIONS OF SINGLE AND DOUBLE BAR					
Single bar min/MAX					
U	200				
Α	300/800				
В	300/800				
С	300/800				
Dou	ıble bar min/MAX				
U	200				
Α	300/800*				
В	450/450*				
С	450/450*				

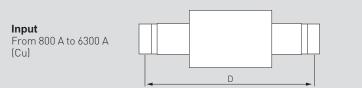
See on page 60 the drawings with all drilling details for dimensions of coverplate [1] and bars [2] Dimension H changes with the rating; it is specified in the technical information

No standard elements "Special" (with measurements that are different from those show in the figure) are referred to the Min and Max dimensions specified in the table.

* For all the non standard connection interface with exit bars


+ horizontal elbow + vertical elbow (special), it is possible to have

only one of the three sides in size exceeding 450 mm. For example, when ordering a connection interface with exit bars + horizontal elbow + vertical elbow with size C=650 mm, the A and B size will have to be ≤ 450 mm

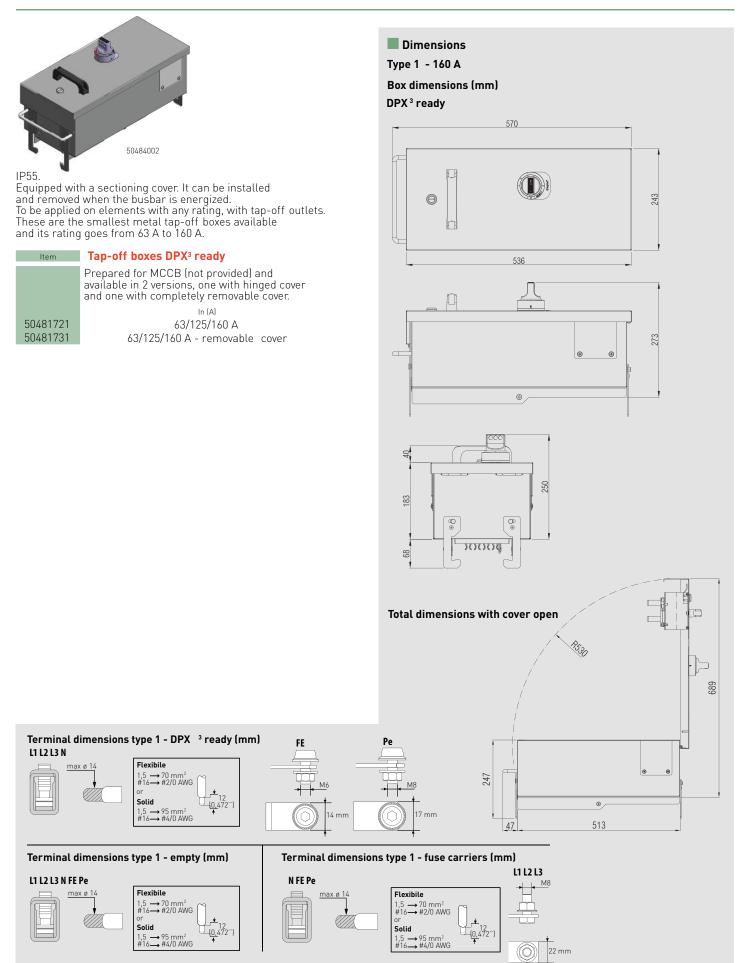

complementary run components

SELECTION ISOLATOR AND RATE REDUCER WITH ISOLATOR SWITCH

Dimension H changes with the rating; it is specified in the technical information

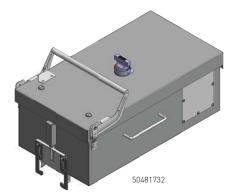
Rate Reducer

Exit From 800 A to 1250 A From 1600 A to 2500 A (Cu)


EXIT	D
From 800 A to 1250 A	1500
From 1600 A to 2500 A	2000

Fuses not included. See general Bahra TBS catalogue

Note:- Reducer available with / without(1) overcurrent Protection.

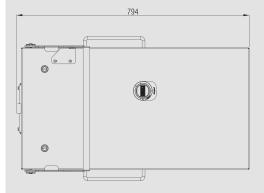

(1) As per NEC 364-10, Omission of overcurrent protection shall be permitted at points where busways are reduced in ampacity, provided that the length of the busway having the smaller ampacity does not exceed 15 m (50 ft) and has an ampacity at least equal to one-third the rating or setting of the overcurrent device next back on the line.

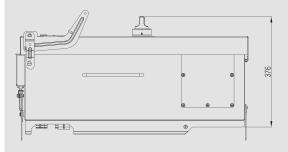
METAL tap-off box Type 2 - 250 A: plug-in type

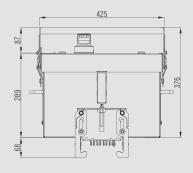
IP55.

Equipped with a sectioning cover. It can be installed and removed when the busbar is energized. To be applied on elements with any rating, with tap-off outlets. These are the medium size metal tap-off boxes available and its rating is 250 A.

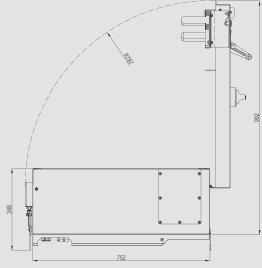
Item Tap-off boxes DPX³ ready

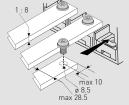

	Prepared for Bahra TBS MCCB (not provided) and available in 2 versions, one with hinged cover and one with completely removable cover. In (A)
50481722	250 A
50481724	250 A - DRXHP ready
50481732	250 A - removable cover
50481734	250 A - DRXHP ready removable cover
	l'entovable cover

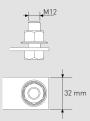

Dimensions


Type 2 - 250A & 630A

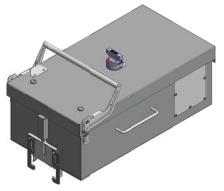
Box dimensions (mm)


DPX ³ ready




Total dimensions with cover open

Terminal dimensions type 2 DPX ³ ready and empty (mm) L1 L2 L3 N FE Pe



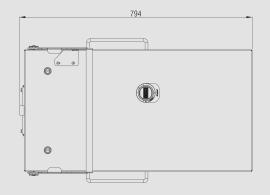
Terminal dimensions type 2 fuse carriers (mm) L1 L2 L3 N FE Pe

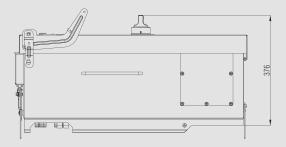
50481733

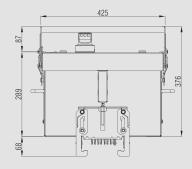
IP55.

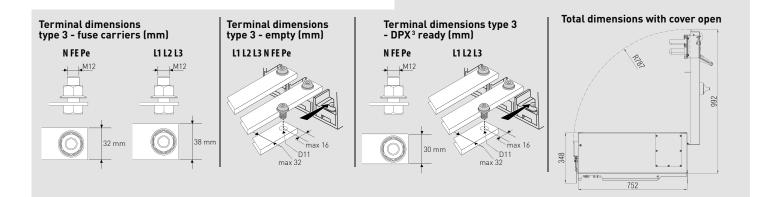
Equipped with a sectioning cover. It can be installed To be applied with a sectioning cover, it can be installed to be applied on elements with any rating, with tap-off outlets. These are the largest size metal tap-off boxes available and its rating is 400 A or 630 A.

Item Tap-off boxes DPX³ ready

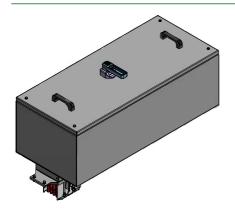

		Prepared for Bahra TBS MCCB (not provided) and available in 2 versions, one with hinged cover and one with completely removable cover.
		In (A)
50	481723	400/630 A - DPX ³ ready

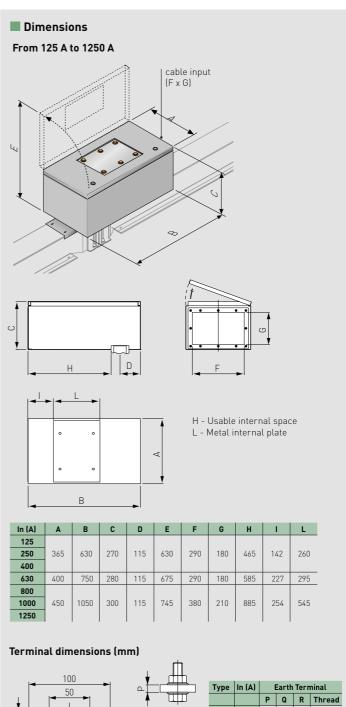

50481733

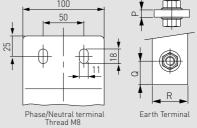

400/630 A - DPX³ ready removable cover


Dimensions

Type 3 (400 - 630 A) Box dimensions (mm) DPX³ ready






Compact BUSWAYS - HE tap-off box on the junction - 800 A to 1250 A: bolt-on type

67281931P

ltem	Empty Tap-off boxes bolt-on TYPE
	IP55 Can be installed on elements with any rating, with or without tap-off outlets
	Description
67281931P	Bolt on box empty for 120 mm single bar
67281932P	Bolt on box empty for 160 mm single bar
67281933P	Bolt on box empty for 190 mm single bar
67281934P	Bolt on box empty for 210 mm single bar
67391931P	Bolt on box empty for 2 x 120 mm bars
67391932P	Bolt on box empty for 2 x 160 mm bars
67391933P	Bolt on box empty for 2 x 190 mm bars
67391934P	Bolt on box empty for 2 x 210 mm bars

	Туре	In (A)	Earth Terminal			
			Ρ	Q	R	Thread
-		125	3.3	20	30	M8
	5A	250	3.3	20	30	M8
		400	3.3	20	30	M8
	5B	630	5.3	20	30	M8
		800	6.2	20	30	M8
	5C	1000	6.2	20	30	M8
		1250	6.2	20	30	M8

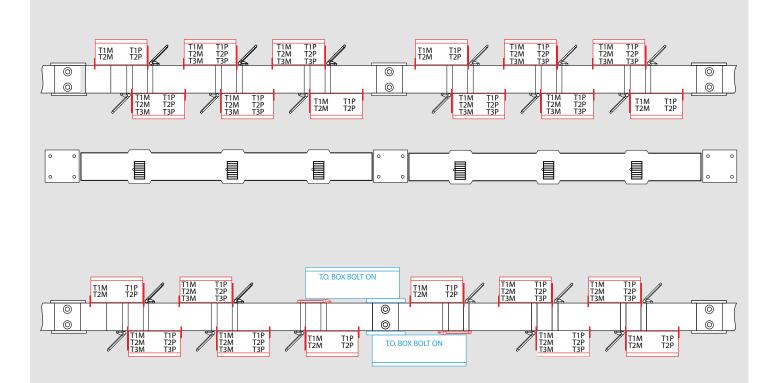
WARNING

The bolted boxes are to be installed when the busbar is disconnected and not energized

In order to finalize the Bolt on box, it is necessary to specify the Busway rating in which the box will installed on.

Tap-off boxes can be pre-equipped with DPX moulded case circuit breakers (MCCB) upon request

Please contact Bahra TBS for more details on the dimensions



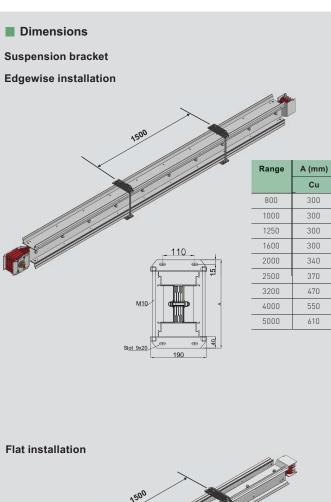
Technical informations

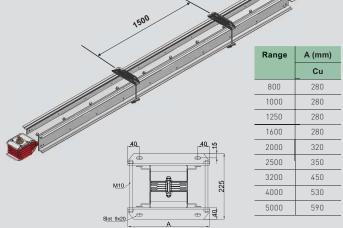
Not all boxes can be installed in any position

The following figures show where the various Plug-in/Bolt-on boxes may be installed on elements with standard setup

T1/T2/T3: type of tap-off box M: metal tap-off box P: fiberglass plastic tap-off box

Compact BUSWAYS - HE brackets


The brackets enable sturdy installation of the busbar to the system


The proceeds on a provide the process of the system support structures The recommended installation distance between brackets is 1.5 metres Bahra TBS offers suitable bracket solutions certified for any type of installation, even in the most difficult environments: • installations subjected to strong vibrations; • installation in seismic environments

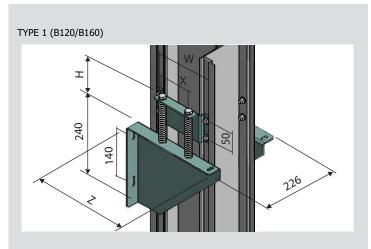
Cat.Nos	Suspension	Brackets
Cu	In (A)	Туре
T65202001 T65202002 T65202003 T65202003 T65222001 T65222002	2000 2500 3200	edgewise
T65222003 T65202013 T65202013 T65202013 T65202111 T65202112 T65202113	5000 800-250 1600-2000 2500 3200 4000 5000	flat

Compact BUSWAYS - HE

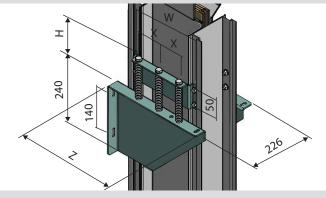
brackets

Compact BUSWAYS - HE brackets

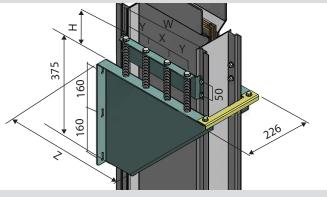
T65213711

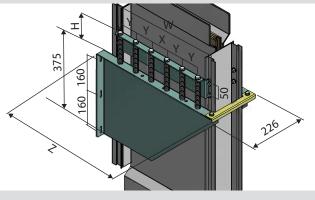

Cat.Nos	Brackets	for vertical elements
Cu	In (A)	Туре
		Wall bracket and springs
T6521371	1 800-1250	
T6521371		
T6521371	2 2000	
T6521371		A
T6521374		
T6521374		
T6521374	3 5000	
-		Wall bracket
T6521372		
T6521372		ar ta
T6521372		
T6521372		В
T6521375		
T6521375		
T6521375	3 5000	
T6521370	1 800-1250	Floor Bracket with springs
T6521370		
T6521370		
T6521370		
T6521373		
T6521373		
T6521373		
10021070		Floor Bracket
T6521376	1 800-1250	
T6521376	2 1600	
T6521376	2 2000	e e
T6521376	3 2500	
T6521377	1 3200	
T6521377	2 4000	
T6521377	3 5000	
-	800-2000	* Anti-seismic bracket
-	2500	
T6521379	1 3200	
T6521379	2 4000	E
T6521379	3 5000	
		· •••• •••

*For more technical details, please contact Bahra TBS


	2	X,Y,Z AND W		OF THE BRAC	KETS	
	Type 1 B120 4 SPRINGS	Type 1 B160 4 SPRINGS	Type 2 B190 6 SPRINGS	Type 3 2B120 8 SPRINGS	Type 3 2B160 8 SPRINGS	Type 4 2B190 12 SPRINGS
CBL-HE	800A - 1600A	2000A	2500A	3200A	4000A	5000A
CBL-AE	800-2000A	2500A	-	3200A	4000A-5000A	-
W [mm]	162	202	232	332	4000A	472
Z [mm]	285	350	350	455	590	590
X [mm]	90	130	80	90	110	80
Y [mm]	-	-	-	85	115	80

Compact BUSWAYS - HE


brackets


TYPE 2 (B190)

TYPE 3 (2B120/2B160)

TYPE 4 (2B190)

Fixing indication

brackets

Technical information

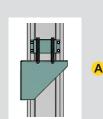
For vertical path **sections of less than 2 m** the use of standard suspension brackets is sufficient

1- Horizontal installation fixing

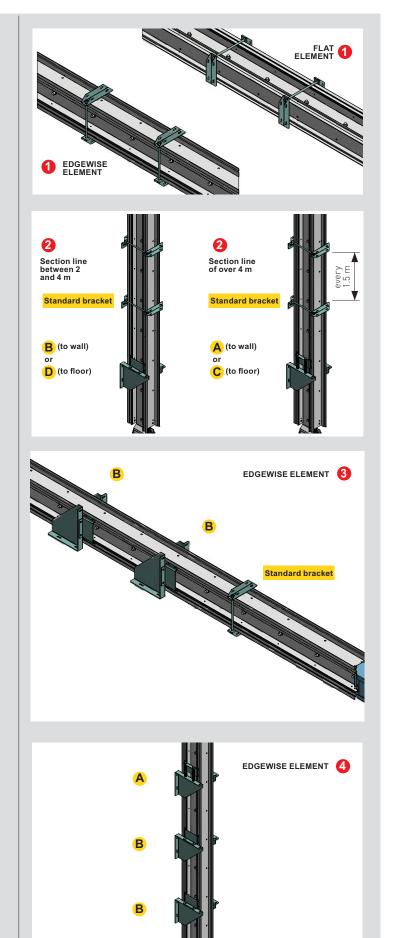
Fixing recommended: 1 bracket every 1.5 metres

2- Fixing for vertical installation (rising mains)

In case of rising mains, in addition to the standard brackets it will also be necessary to use other screw fixed brackets to prevent sliding of the busbar. Thanks to pre-loaded springs, these brackets absorb the forces pressing on the busbar and direct any expansion in a precise direction They therefore operate as a limitation, and support the traction and compression forces of the busbar trunking system


- Section line between 2 and 4 m In the lowest point Type B vertical bracket if secured to the wall, or Type D if secured to the floor + one edgewise installation standard bracket
- Section line of over 4 m In the lowest point Type A vertical bracket if secured to the wall, or Type C if secured to the filoor + one edgewise installation standard bracket every metre and a half of the path + one Type A or C bracket based on the following table

3- Fixing for installation in seismic environments in horizontal

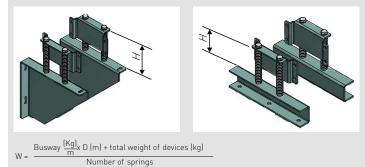

Fit 1 bracket every metre and a half of the busbar Every 2 anti-seismic brackets with bracket (Type B), use one standard bracket

4- Fixing for installation in seismic environments in vertical (section lengths > 2 m)

Fit 1 bracket every metre and a half of the busbar Every 2 anti-seismic brackets with bracket (Type B) use one bracket with bracket and spring (Type A)

В

operating instructions on how to design riser mains

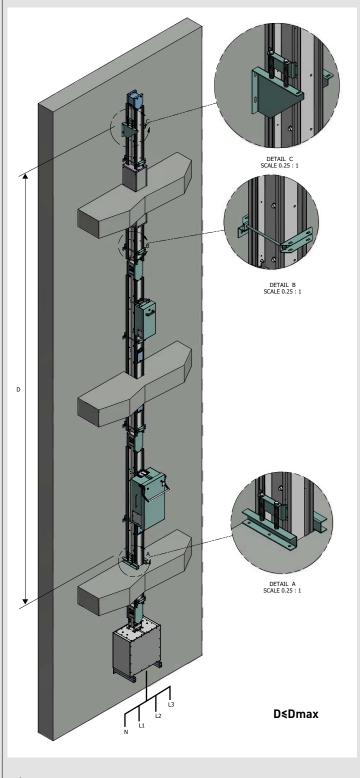

- The RH misaligned feed units (without monobloc) are used at the departure of the riser mains lines, allow the busbar to be installed 40 mm away from the wall. In order to position the tap-off boxes correctly as shown in the figure, the neutral conductor of the riser main must be on the left side of the element
- 2) The tap-off boxes can be installed in the tap-off outlets (Plug-in type) and on the junction of elements (Bolt-on type)
- **3)** Use elements with tap-off outlets where necessary, distribute the power using plug-in boxes
- **4)** Use EI120 fire bar rier kit for each compartment floor, where specifically requested
- 5) At the end of the riser mains, position the IP55 end cover

Maximum hanging distance with springs (Dmax):

	CBL HE 4C	
In (A)	D max	Kit springs
800	8	4
1000	8	4
1250	7	4
1600	6	4
2000	5	4
2500	5	6
3200	7	8
4000	6	8
5000	5	12

For 5C version multiply Dmax by 0.85

Spring preload calculation (H):

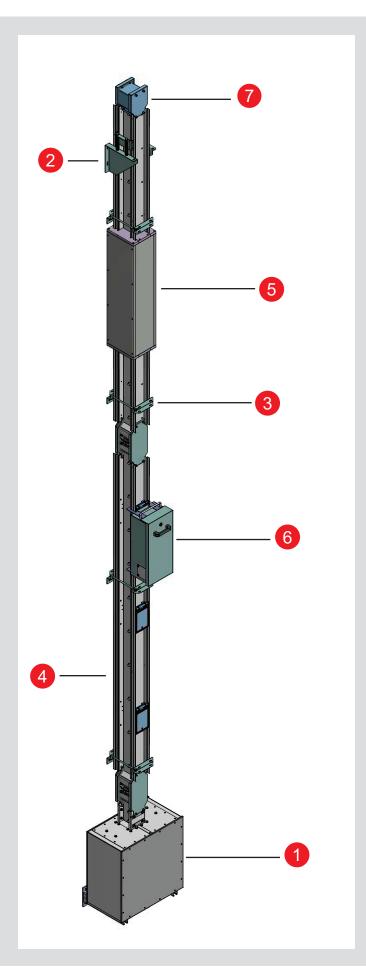


 $H = 130 - \frac{W}{2}$

Preload calculation example H

Busbar type: 5C (+Pe sheet) In (A) : 2000 Dmax (m): 5x0.85 = 4.25 D (m): 4 Busbar (Kg/m): 45.3 Weight of box 1 (Kg): 13 Weight of box 2 (Kg): 37

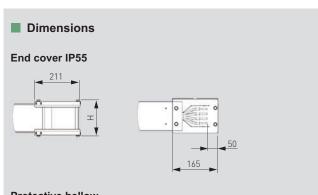
H = $130 - \frac{(45.3x4)+13+37}{4x3} = 110 \text{ mm}$



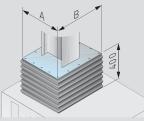
- A) Floor hanger: use one or more of this suspension brackets, according to the weight of the whole riser mains (including the boxes). For risers that are shorter than 4 meters, fix to the base with type D brackets (see pag. 39), when longer, use a type C suspension brackets (see pag. 39) respecting the maximum distances (Dmax) indicated in the tables.
- B) Standard hanger: use this type of suspension bracket to hang the busbar every 1,5 metres of riser mains.
 C) Wall hanger: use one or more of this suspension brackets, according
- C) Wall hanger: use one or more of this suspension brackets, according to the weight of the whole riser mains (including the boxes). For risers that are shorter than 4 meters, fix to the base with type B brackets (see pag. 39), when longer, use a type A suspension brackets (see pag. 39) respecting the maximum distances (Dmax) indicated in the tables.

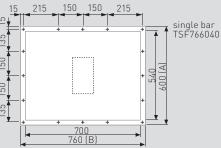
operating recommendations on how to design riser mains

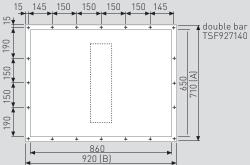
- Use an RH end feed unit (without monobloc) In order to position the tap-off boxes correctly as shown in the figure, the neutral conductor of the riser main must be on the left side of the element
- 2) Use one or more suspension brackets for the vertical elements, according to the weight of the whole riser mains.
- **3)** Use a standard suspension bracket to hang the busbar every 1.5 metres of riser mains
- **4)** Use elements with tap-off outlets where necessary, distribute the power using plug-in boxes
- 5) Use S120 fire barrier kit for each compartment floor, where specifically requested
- **6)** The tap-off boxes can be installed in the tap-off outlets and near the connection between the elements
- 7) At the end of the riser mains, position the IP55 end cover



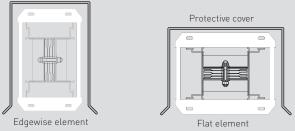
accessories


T65283101	۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲	Dimer End cove
Cat.Nos	End cover IP55	
Cu	The end cover is the component that ensures an IP55 protection degree at the end of the line In (A)	Protective
T65283101 T65283101 T65283101 T65283102	800 1000 1250 1600	
T65283102 T65283103	2000 2500	
T65393101 T65393102	3200 4000	15 2'
T65393103	5000	+
	Protective bellow	+
Cu	Recommended for protection of the interface connection on electric boards, dry-type transformer with enclosure and oil-type transformers In (A)	135 150 1 + +
TSF766040	Single bellow 760x600 mm. H 400 Double bellow 920x710 mm. H 400	◀
TSF927140		15 145


Compact BUSWAYS - HE


accessories

ve bellow

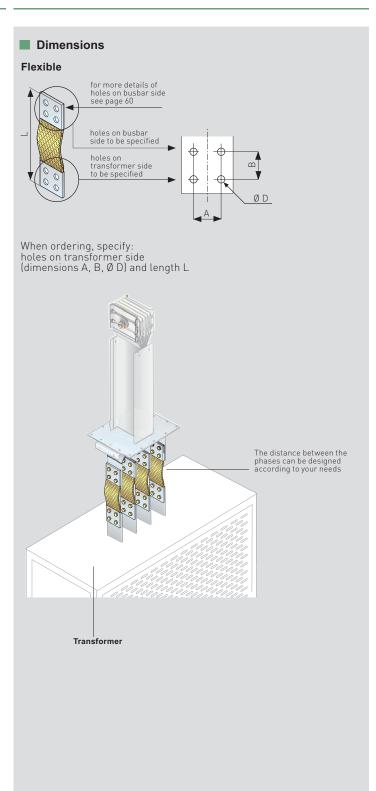


Protective cover for outdoor applications

Protective cover

Covering accessory to be used for outdoor installations and wherever the standard IP55 Degree of protection is not adequate The protective cover for outdoor applications does not change the degree of protection IP of the busbar duct

Compact BUSWAYS - HE flexible braid connections

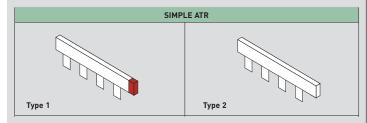

Flexible

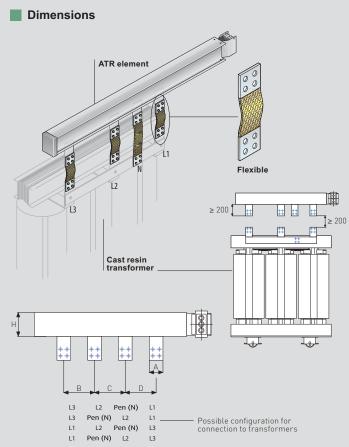
Flexible braid connections are used to connect the transformer to the connection interface of the busbar when mechanically uncoupling the two elements is required, to prevent the transmission of vibrations

Cat.Nos	Flexibl	e braid cor	nnections
Cu	In (A)	N° braid per phase	L (mm)
TFC100010	800	1	
TFC200010	1000		
TFC300010	1250		
TFC500010	1600		300-450
TFC600010	2000		
TFC400010	2500	2	
TFC500010 TFC600010	3200 4000		
TFC700010	4000 5000		
11 0700010	5000		
TFC100020	800		
TFC200020	1000	1	
TFC300020	1250		
TFC500020	1600		451-600
TFC600020	2000		401 000
TFC400020	2500		
TFC500020	3200	2	
TFC600020	4000		
TFC700020	5000		
TFC100030	800	1	
TFC200030	1000		
TFC300030	1250		
TFC500030	1600		601-750
TFC600030 TFC400030	2000 2500		
TFC500030	3200	2	
TFC600030	4000		
TFC700030	5000		
TFC100099	800		
TFC200099	1000	1	
TFC300099	1250		
TFC500099	1600		> 750
TFC600099	2000		\rightarrow 750
TFC400099	2500	0	
TFC500099	3200	2	
TFC600099	4000		
TFC700099	5000		

Compact BUSWAYS - HE

flexible braid connections


Note: for insulated flexible braid, please contact Bahra TBS.



ATR elements

ATR elements

ATR are elements used for connection to electric boards or transformers, similar in everything to straight elements These elements may be used for connection to both cast resin and oil transformers, and offer the advantage that the connection interfaces may be installed directly on the vertical section of the transformer terminals, minimising the time required for the connection of the busbar trunking system to the transformer. Each element is designed based on precise connection specifications supplied by the customer

ATR dimensions

Although designed ad-hoc, ATR elements are still subjected to construction limits. Below are the summarizing tables indicating these values

		INTERAXE	ES (mm)		
		Cu			
In (A)	Α	В	С	D	Н
800	70	165	165	165	220
1000	70	165	165	165	220
1250	85	165	165	165	220
1600	100	205	205	205	220
2000	120	205	205	205	260
2500	160	255	255	255	290
3200	190	205	205	205	390
4000	120	235	235	235	470
5000	160	255	255	255	530

Compact BUSWAYS - HE ATR elements

The system: the Bahra TBS transformer advantage The system:the Bahra TBS XL³ advantage Type A setup the second Lv side Bahra TBS Cast Resin Transformers Installation kit for XL³ cabinets Kit Cat.No 0 205 29 for reinforcing the roof of the XL³ cabinets for the installation of the Bahra TBS interface to Type B setup connect the busbar systems The Compact BUSWAYS range can be easily and immediately combined with the Bahra TBS $\rm XL^3$ 4000 cabinets The reinforcement kit enables you to install any type of unit to the board onto the roof of the XL³ structure in a quick and easy way Upon request, and with the specific measurements, custom made connections between our BUSWAY interface and the DMX air-circuit breaker can be supplied for installation in the XL³ cabinets Lv side The safety and the operational efficiency of the Bahra TBS system are guaranteed by the system certification, achieved after rigorous tests carried out in the most important international laboratories. Bahra TBS Cast Resin Transformers For more details about the XL³, please refer to the general Bahra TBS catalogue Type C setup Lv side Bahra TBS Cast Resin Transformers The Bahra TBS group product synergy answers to the global installation need The Bahra TBS cast resin transformers have specifically designed connections for the Bahra TBS busbars The versions shown represent some of the standardized solutions Please contact Bahra TBS for more details on the dimensions

technical information

General features

The Compact BUSWAY line is available in the standard range: From **800A to 6300A with copper conductors** The dimensions of our BUSWAY enhance **its resistance to short circuit stresses**; in addition, they can reduce the impedance of the circuit by controlling the voltage drops and allow for the installation of high power electrical systems, even in extremely confined spaces

OurBUSWAYisavailable with a wide selection of tap-off boxes that range from 63A up to 1250A, thus allowing you to locally protect and feed different types of loads by housing protective devices such as fuses, MCCBs and motorised switches

Our BUSWAY is not only in compliance with the harmonised Standards IEC 61439-6 but also answers specifically to many clients needs for more severe conditions of use

Thus the rated current of Bahra TBS's busbar trunking systems is always referred to the average ambient temperature of 35°C thus providing the markets with suitably **upgraded** products The nominal range of all our BUSWAYS is guaranteed both for horizontal

installations (flat and edgewise) and for vertical installations without downgrading

Our busbar trunking systems are designed so that they can be maintenance-free, except for the periodic and compulsory inspections required by the Standard IEC 60364

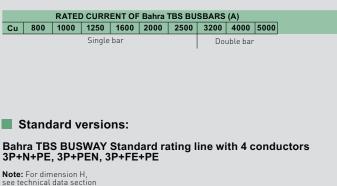
The tightening torque inspection of the junction can be carried out by qualified personnel, even when the busbar is energized

Structural features

The outer casing of our compact BUSWAYS line consists of four C section aluminum casing & cover riveted, with excellent mechanical, electric and heat loss efficiency. The aluminum casing & cover are treated and painted with RAL7035 with a high resistance to chemical agents. The standard degree of protection is IP55, on request IP65/IP66; also with certain accessories, it can also be installed outdoors. The busbar copper conductors have a rectangular cross section with rounded corners, tinplated and insulated with epoxy.

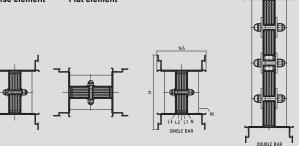
The insulation between bars is ensured by epoxy class B (130°C) (Class F (155°C) thermal resistance available on request.

All plastic components have a V1 self-extinguishing degree (as per UL94); they are fire retardant and comply with the glow-wire test according to standards.

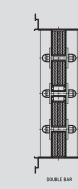

Our compact BUSWAYS line is **Halogen Free.** In order to facilitate storage operations especially to reduce the installation time, the straight elements, trunking components as well as all the components of the BUSWAY line are supplied with a monobloc pre-installed at the factory.

The junction contact is ensured by **tin plated copper for each phase**, insulated with red **class F thermosetting plastic material**

The **monobloc** has **shearhead nuts**: after tightening the nuts with a standard wrench, the outer head will break at the correct torque value, hence giving you the certainty that the connection has been made properly so as to guarantee safety and maximum performance over time.


Finally, in order to completely verify the insulation level, every element with a monobloc undergoes an **insulation test** (phase-phase, phase-PE) at the factory with a test voltage of 3500 V AC for 1.5 seconds.

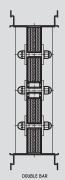
CBL-HE Busway											
Temperature 15 20 25 30 35 40 45 50 55 60										60	
Kt Factor	1.12	1.18	1.15	1.12	1.08	1.05	1.03	1.00	0.975	0.95	


Note: For dimension H, see technical data section PE: Protection Earth FE: Functional Earth (Clean Earth)

Edgewise element Flat element

Bahra TBS BUSWAY Standard rating line with 5 conductors 3P+N+FE+PE

Note: For dimension H, see technical data section PE: Protection Earth FE: Functional Earth (Clean Earth)



Bahra TBS BUSWAY Standard rating with 2N 200% Neutral line 3P+2N+PE

SINGLE BAR

Note: For dimension H, see technical data section PE: Protection Earth 2N: 200% Neutral

Special versions on request ++

technical data

Bahra TBS Compact Busway Rating - 4 (SINGLI	FBAR			D	OUBLE B	۵R
					1						
Rated current	In (800	1000	1250	1600	2000	2500	3200	4000	5000
Overall dimension of the busbars	LxH		145x220	145x220	145x220	145x220	145x260	145x290	145x390	145x470	145x530
Rated operational voltage	Ue		1000	1000	1000	1000	1000	1000	1000	1000	1000
Rated insulation voltage	Ui		1000	1000	1000	1000	1000	1000	1000	1000	1000
Frequency	f [-		50/60	50/60	50/60	50/60	50/60	50/60	50/60	50/60	50/60
Rated short-time current (1 s)	ICW [k.	A]rms	50	50	60	60	88	88	150	150	150
Peak current	lpk [[kA]	105	105	132	132	194	194	330	330	330
Rated short-time current of the neutral bar (1 s)	ICW [k	A]rms	30	30	36	36	53	53	90	90	90
Peak current of the neutral bar	lpk [[kA]	63	63	76	76	116	116	198	198	198
Rated short-time current of the protective circuit (1 s)	ICW [k.	A]rms	30	30	36	36	53	53	90	90	90
Peak current of the protective circuit	lpk [[kA]	63	63	76	76	116	116	198	198	198
Average phase resistance at 20°C	R20 [m	nΩ/m]	0.044	0.043	0.034	0.027	0.020	0.016	0.012	0.010	0.008
Average phase reactance	X [m(נא/m]	0.018	0.018	0.016	0.016	0.011	0.009	0.007	0.006	0.005
Average phase impedance	Z [m(נא/m]	0.048	0.046	0.038	0.032	0.022	0.018	0.014	0.011	0.009
Average phase resistance at thermal conditions	R [mi	Ω/m]	0.051	0.052	0.042	0.034	0.025	0.021	0.016	0.013	0.011
Average phase impedance at thermal conditions	Z [m(Ω/m]	0.054	0.055	0.045	0.038	0.027	0.023	0.018	0.014	0.012
Average Neutral resistance	R20 [m	nΩ/m]	0.044	0.043	0.034	0.027	0.020	0.016	0.012	0.010	0.008
Average Resistance of the protective bar (STD)	RPE [n	nΩ/m]	0.020	0.020	0.020	0.020	0.019	0.018	0.015	0.014	0.013
Average Resistance of the protective bar (+ PE Sheet)	RPE [n	nΩ/m]	0.043	0.043	0.043	0.043	0.033	0.028	0.022	0.016	0.014
Average reactance of the protective bar	XPE [n	nΩ/m]	0.054	0.054	0.054	0.054	0.044	0.032	0.022	0.017	0.016
Average resistance of the fault loop (STD)	Ro [m	Ro [mΩ/m]		0.063	0.055	0.048	0.038	0.034	0.028	0.024	0.021
Average resistance of the fault loop (+ PE Sheet)	Ro [m	Ro [mΩ/m]		0.086	0.078	0.071	0.052	0.044	0.034	0.026	0.022
Average reactance of the fault loop	Xo [m	Ω/m]	0.07	0.07	0.07	0.07	0.06	0.04	0.03	0.02	0.02
Average impedance of the fault loop (STD)	Zo [m	Ω/m]	0.097	0.096	0.089	0.085	0.067	0.053	0.040	0.033	0.030
Average impedance of the fault loop (+ PE Sheet)	Zo (m	Ω/ml	0.113	0.112	0.105	0.100	0.076	0.060	0.045	0.035	0.030
Zero-sequence short-circuit average resistance phase - N	Ro (m		0.059	0.057	0.046	0.037	0.026	0.021	0.017	0.013	0.011
Zero-sequence short-circuit average reactance phase - N	Xo [m		0.024	0.024	0.021	0.021	0.015	0.012	0.009	0.008	0.007
Zero-sequence short-circuit average impedance phase - N	Zo [m		0.063	0.062	0.051	0.042	0.030	0.025	0.019	0.015	0.013
Zero-sequence short-circuit average resistance phase - PE	Ro [m		0.079	0.077	0.066	0.057	0.045	0.039	0.032	0.027	0.024
Zero-sequence short-circuit average reactance phase - PE	Xo [m		0.060	0.060	0.059	0.059	0.048	0.035	0.024	0.019	0.018
Zero-sequence short-circuit average impedance phase - PE	Zo [m		0.099	0.098	0.089	0.082	0.040	0.053	0.024	0.033	0.029
		0.70	42.1	42.6	35.5	30.7			14.2		9.7
	COSØ =						21.8	18.1		11.6	
	COSØ =	0.75	43.5	44.0	36.6	31.4	22.3	18.6	14.5	11.9	9.9
Voltage drop with distribuited load	COSØ =	0.80	44.7	45.3	37.6	32.1	22.8	19.1	14.9	12.1	10.1
ΔV [V/(m*A)]10-6	COSØ =	0.85	45.8	46.4	38.4	32.5	23.2	19.4	15.1	12.3	10.3
	COSØ =	0.90	46.6	47.3	39.0	32.7	23.4	19.6	15.3	12.4	10.4
	COSØ =	0.95	46.9	47.6	39.1	32.5	23.3	19.5	15.2	12.3	10.3
	cosø =	1.00	44.2	45.0	36.6	29.7	21.4	18.0	14.0	11.2	9.4
Weight (STD)	p (kg	j/m]	23.7	24.1	27.7	32.1	43.7	51.8	68.6	85.9	101.8
Weight (+ PE Sheet)	p (kg		27.3	27.7	31.3	35.8	48.5	57.4	75.8	95.2	113.0
Fire load	[kWh	n/m]	4.5	5.5	5.5	8.0	8.2	10.5	16.0	19.0	21.0
Degree of protection	IF	>	55	55	55	55	55	55	55	55	55
Insulation material thermal resistance class			B/F*								
Losses for the Joule effect at nominal current	P [W	//m]	98	156	198	263	296	389	498	623	817
Ambient temperature min/MAX	[°(-5/50	-5/50	-5/50	-5/50	-5/50	-5/50	-5/50	-5/50	-5/50

 * Class F thermal resistance (155°C) available on request In: rated current referred to a room temperature of 50°C

STD Standard version

Compact BUSWAYS - HE technical data (continued)

					SINGLI	EBAR			D	OUBLE BA	AR
Rated current	In	[4]	800	1000	1250	1600	2000	2500	3200	4000	5000
Overall dimension of the busbars	LxH		145x220	145x220	145x220	145x220	145x260	145x290	145x390	145x470	145x53
Rated operational voltage	Ue		1000	1000	1000	1000	1437200	143x270	143,370	1000	1000
Rated insulation voltage	Ui		1000	1000	1000	1000	1000	1000	1000	1000	1000
Frequency	f [H		50/60	50/60	50/60	50/60	50/60	50/60	50/60	50/60	50/60
Rated short-time current (1 s)	ICW [k		50	50/80	60	60	88	88	150	150	150
Peak current			105				194	194			330
	lpk		30	105	132	132 36	53	53	330 90	330 90	- 330 - 90
Rated short-time current of the neutral bar (1 s)	ICW [k			30	36						
Peak current of the neutral bar	lpk		63	63	76	76	116	116	198	198	198
Rated short-time current of the protective circuit (1 s)	ICW [k		30	30	36	36	53	53	90	90	90
Peak current of the protective circuit	lpk		63	63	76	76	116	116	198	198	198
Average phase resistance at 20°C	R20 [n		0.044	0.043	0.034	0.027	0.020	0.016	0.012	0.010	0.00
Average phase reactance	X [ml		0.018	0.018	0.016	0.016	0.011	0.009	0.007	0.006	0.00
Average phase impedance	Z [ml		0.048	0.046	0.038	0.032	0.022	0.018	0.014	0.011	0.00
Average phase resistance at thermal conditions		R [mΩ/m]		0.052	0.042	0.034	0.025	0.021	0.016	0.013	0.01
Average phase impedance at thermal conditions		Z [mΩ/m]		0.055	0.045	0.038	0.027	0.023	0.018	0.014	0.01
Average Neutral resistance		R20 [mΩ/m]		0.043	0.034	0.027	0.020	0.016	0.012	0.010	0.00
Average functional Earth resistance (FE)	R20 [n	R20 [mΩ/m]		0.084	0.069	0.055	0.039	0.032	0.025	0.019	0.01
Average functional Earth reactance (FE)	X [mi	X [mΩ/m]		0.022	0.021	0.020	0.019	0.016	0.014	0.011	0.00
Average Resistance of the protective bar (STD)	RPE [r	RPE [mΩ/m]		0.020	0.020	0.020	0.019	0.018	0.015	0.014	0.01
Average Resistance of the protective bar (+ PE Sheet)	RPE [mΩ/m]		0.043	0.043	0.043	0.043	0.033	0.028	0.022	0.016	0.01
Average reactance of the protective bar	XPE [mΩ/m]		0.054	0.054	0.054	0.054	0.044	0.032	0.022	0.017	0.01
Average resistance of the fault loop (STD)	Ro (m	nΩ/m]	0.060	0.059	0.050	0.042	0.032	0.028	0.022	0.018	0.01
Average resistance of the fault loop (+ PE Sheet)	Ro (m	nΩ/m]	0.073	0.071	0.061	0.052	0.037	0.031	0.024	0.019	0.01
Average reactance of the fault loop	Xo [m	ıΩ/m]	0.07	0.07	0.07	0.07	0.06	0.04	0.03	0.02	0.02
Average impedance of the fault loop (STD)	Zo [m	ıΩ/m]	0.094	0.093	0.086	0.082	0.064	0.049	0.036	0.029	0.02
Average impedance of the fault loop (+ PE Sheet)	Zo [m	ıΩ/m]	0.102	0.101	0.093	0.087	0.066	0.051	0.038	0.030	0.02
Zero-sequence short-circuit average resistance phase - N	Ro [m	nΩ/m]	0.059	0.057	0.046	0.037	0.026	0.021	0.017	0.013	0.01
Zero-sequence short-circuit average reactance phase - N	Xo [m	ıΩ/m]	0.024	0.024	0.021	0.021	0.015	0.012	0.009	0.008	0.00
Zero-sequence short-circuit average impedance phase - N	Zo [m	nΩ/m]	0.063	0.062	0.051	0.042	0.030	0.025	0.019	0.015	0.01
Zero-sequence short-circuit average resistance phase - PE	Ro [m	nΩ/m]	0.059	0.057	0.046	0.037	0.026	0.021	0.017	0.013	0.01
Zero-sequence short-circuit average reactance phase - PE	Xo (m	ιΩ/m]	0.024	0.024	0.021	0.021	0.015	0.012	0.009	0.008	0.00
Zero-sequence short-circuit average impedance phase - PE	Zo [m	nΩ/m]	0.063	0.062	0.051	0.042	0.030	0.025	0.019	0.015	0.01
	cosø =	0.70	42.1	42.6	35.5	30.7	21.8	18.1	14.2	11.6	9.7
	cosø =	0.75	43.5	44.0	36.6	31.4	22.3	18.6	14.5	11.9	9.9
	cosø =	0.80	44.7	45.3	37.6	32.1	22.8	19.1	14.9	12.1	10.1
Voltage drop with distribuited load ΔV [V/(m*A)]10 ⁻⁶	cosø =	0.85	45.8	46.4	38.4	32.5	23.2	19.4	15.1	12.3	10.3
	cosø =	0.90	46.6	47.3	39.0	32.7	23.4	19.6	15.3	12.4	10.4
	cosø =	0.95	46.9	47.6	39.1	32.5	23.3	19.5	15.2	12.3	10.3
	cosø =	1.00	44.2	45.0	36.6	29.7	21.4	18.0	14.0	11.2	9.4
Weight (STD)	p [kg		26.3	26.8	30.8	35.9	48.9	58.0	76.8	96.2	114.
Neight (+ PE Sheet)	p [kg		29.9	30.4	34.4	39.5	53.7	63.7	84.1	105.8	125.
Fire load	[kWł	-	5.6	6.9	6.9	10.0	10.3	13.1	20.0	23.8	26.3
Degree of protection											
• •	IF		55	55	55	55	55	55	55	55	55
Insulation material thermal resistance class	-	(/)	B/F*	B/F*	B/F*	B/F*	B/F*	B/F*	B/F*	B/F*	B/F ³
Losses for the Joule effect at nominal current	P [W		98	156	198	263	296	389	498	623	817
Ambient temperature min/MAX	[°(CJ	-5/50	-5/50	-5/50	-5/50	-5/50	-5/50	-5/50	-5/50	-5/5

* Class F thermal resistance (155°C) available on request In: rated current referred to a room temperature of 50°C

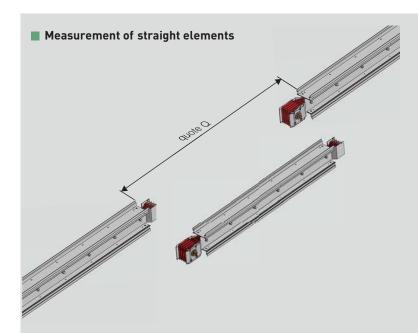
technical data

					SINGL	F BAR			D		AR
Rated current		· ^]	000	1000			2000	0500			1
	In		800	1000	1250	1600	2000	2500	3200	4000	5000
Overall dimension of the busbars	L x H		145x220	145x220	145x220	145x220	145x260	145x290	145x390	145x470	145x530
Rated operational voltage	Ue		1000	1000	1000	1000	1000	1000	1000	1000	1000
Rated insulation voltage	Ui		1000	1000	1000	1000	1000	1000	1000	1000	1000
Frequency	f [H		50/60	50/60	50/60	50/60	50/60	50/60	50/60	50/60	50/60
Rated short-time current (1 s)	ICW [k.		50	50	60	60	88	88	150	150	150
Peak current	lpk (105	105	132	132	194	194	330	330	330
Rated short-time current of the neutral bar (1 s)	ICW [k.		30	30	36	36	53	53	90	90	90
Peak current of the neutral bar	lpk (63	63	76	76	116	116	198	198	198
Rated short-time current of the protective circuit (1 s)	ICW [k	A]rms	30	30	36	36	53	53	90	90	90
Peak current of the protective circuit	lpk (kA]	63	63	76	76	116	116	198	198	198
Average phase resistance at 20°C	R20 [n	nΩ/m]	0.044	0.043	0.034	0.027	0.020	0.016	0.012	0.010	0.008
Average phase reactance	X [m()/m]	0.018	0.018	0.016	0.016	0.011	0.009	0.007	0.006	0.005
Average phase impedance	Z [mi	נא/m]	0.048	0.046	0.038	0.032	0.022	0.018	0.014	0.011	0.009
Average phase resistance at thermal conditions	R [mi	በ/m]	0.051	0.052	0.042	0.034	0.025	0.021	0.016	0.013	0.011
Average phase impedance at thermal conditions	Z [mi	.)/m]	0.054	0.055	0.045	0.038	0.027	0.023	0.018	0.014	0.012
Average Neutral resistance	R20 (n	nΩ/m]	0.044	0.043	0.034	0.027	0.020	0.016	0.012	0.010	0.008
Average functional Earth resistance (FE)	R20 [n	nΩ/m]	0.044	0.043	0.034	0.027	0.020	0.016	0.012	0.010	0.008
Average functional Earth reactance (FE)	X [mi	ጋ/m]	0.018	0.018	0.016	0.016	0.011	0.009	0.007	0.006	0.005
Average Resistance of the protective bar (STD)	RPE [mΩ/m]		0.020	0.020	0.020	0.020	0.019	0.018	0.015	0.014	0.013
Average Resistance of the protective bar (+ PE Sheet)	RPE [n	RPE [mΩ/m]		0.043	0.043	0.043	0.033	0.028	0.022	0.016	0.014
Average reactance of the protective bar	XPE [n	XPE [mΩ/m]		0.054	0.054	0.054	0.044	0.032	0.022	0.017	0.016
Average resistance of the fault loop (STD)	Ro [m	Ro [mΩ/m]		0.056	0.047	0.039	0.029	0.025	0.019	0.015	0.013
Average resistance of the fault loop (+ PE Sheet)	Ro (m	Ω/m]	0.066	0.064	0.054	0.044	0.032	0.026	0.020	0.016	0.013
Average reactance of the fault loop	Xo (m	Ω/m]	0.07	0.07	0.07	0.07	0.06	0.04	0.03	0.02	0.02
Average impedance of the fault loop (STD)	Zo [m	Ω/m]	0.092	0.092	0.084	0.080	0.062	0.048	0.035	0.028	0.025
Average impedance of the fault loop (+ PE Sheet)	Zo (m	Ω/m]	0.098	0.096	0.088	0.083	0.064	0.049	0.035	0.028	0.025
Zero-sequence short-circuit average resistance phase - N	Ro [m	Ω/m]	0.059	0.057	0.046	0.037	0.026	0.021	0.017	0.013	0.011
Zero-sequence short-circuit average reactance phase - N	Xo (m	Ω/m]	0.024	0.024	0.021	0.021	0.015	0.012	0.009	0.008	0.007
Zero-sequence short-circuit average impedance phase - N	Zo (m	Ω/m]	0.063	0.062	0.051	0.042	0.030	0.025	0.019	0.015	0.013
Zero-sequence short-circuit average resistance phase - PE	Ro [m	ıΩ/m]	0.059	0.057	0.046	0.037	0.026	0.021	0.017	0.013	0.011
Zero-sequence short-circuit average reactance phase - PE	Xo (m	Ω/m]	0.024	0.024	0.021	0.021	0.015	0.012	0.009	0.008	0.007
Zero-sequence short-circuit average impedance phase - PE	Zo [m	Ω/m]	0.063	0.062	0.051	0.042	0.030	0.025	0.019	0.015	0.013
	cosø =	0.70	42.1	42.6	35.5	30.7	21.8	18.1	14.2	11.6	9.7
	cosø =	0.75	43.5	44.0	36.6	31.4	22.3	18.6	14.5	11.9	9.9
	cosø =	0.80	44.7	45.3	37.6	32.1	22.8	19.1	14.9	12.1	10.1
Voltage drop with distribuited load	cosø =	0.85	45.8	46.4	38.4	32.5	23.2	19.4	15.1	12.3	10.3
ΔV [V/(m*A)]10 ⁻⁶	COSØ =	0.90	46.6	47.3	39.0	32.7	23.4	19.6	15.3	12.4	10.4
	cosø =	0.95	46.9	47.6	39.1	32.5	23.3	19.5	15.2	12.3	10.3
	cosø =	1.00	44.2	45.0	36.6	29.7	21.4	18.0	14.0	11.2	9.4
Weight (STD)			28.1	28.6	33.1	38.7	52.6	62.9	83.1	104.2	124.1
Weight (+ PE Sheet)		p [kg/m] p [kg/m]		32.3	36.7	42.4	57.7	68.5	90.4	113.8	135.4
Fire load	kWh		31.8 5.6	6.9	6.9	10.0	10.3	13.1	20.0	23.8	26.3
Degree of protection	LK VVI		55	55	55	55	55	55	55	55	55
Insulation material thermal resistance class			B/F*	B/F*	B/F*	B/F*		B/F*			
	D Pt	//m]		-	-		B/F*	-	B/F*	B/F*	B/F*
Losses for the Joule effect at nominal current	P [W/m]		98	156	198	263	296	389	498	623	817

 * Class F thermal resistance (155°C) available on request In: rated current referred to a room temperature of 50°C

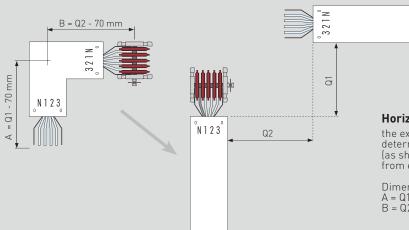
COMPACT BUSWAYS - HE

technical data


Bahra TBS Compact Busway Rating - Do	N sigue	eutral	(2N)								
					SINGL	E BAR			DOUBLE BAR		
Rated current	In [[A]	800	1000	1250	1600	2000	2500	3200	4000	5000
Overall dimension of the busbars	LxH	[mm]	145x220	145x220	145x220	145x220	145x260	145x290	145x390	145x470	145x530
Rated operational voltage	Ue	[V]	1000	1000	1000	1000	1000	1000	1000	1000	1000
Rated insulation voltage	Ui	[V]	1000	1000	1000	1000	1000	1000	1000	1000	1000
Frequency	f [⊦	lz]	50/60	50/60	50/60	50/60	50/60	50/60	50/60	50/60	50/60
Rated short-time current (1 s)	ICW [k.	A]rms	50	50	60	60	88	88	150	150	150
Peak current	lpk [[kA]	105	105	132	132	194	194	330	330	330
Rated short-time current of the neutral bar (1 s)	ICW [k.	ICW [kA]rms		30	36	36	53	53	90	90	90
Peak current of the neutral bar	lpk (lpk [kA]		63	76	76	116	116	198	198	198
Rated short-time current of the protective circuit (1 s)	ICW [k	ICW [kA]rms		30	36	36	53	53	90	90	90
Peak current of the protective circuit	lpk [lpk [kA]		63	76	76	116	116	198	198	198
Average phase resistance at 20°C	R20 [m	R20 [mΩ/m]		0.043	0.034	0.027	0.020	0.016	0.012	0.010	0.008
Average phase reactance	X [m(נא/m]	0.018	0.018	0.016	0.016	0.011	0.009	0.007	0.006	0.005
Average phase impedance	Z [m(נאר []	0.048	0.046	0.038	0.032	0.022	0.018	0.014	0.011	0.009
Average phase resistance at thermal conditions	R [mi	Ω/m]	0.051	0.052	0.042	0.034	0.025	0.021	0.016	0.013	0.011
Average phase impedance at thermal conditions	Z [m(Z [mΩ/m]		0.055	0.045	0.038	0.027	0.023	0.018	0.014	0.012
Average Neutral resistance	R20 [m	R20 [mΩ/m]		0.021	0.017	0.014	0.010	0.008	0.006	0.005	0.004
Average Resistance of the protective bar (STD)	RPE [n	RPE [mΩ/m]		0.020	0.020	0.020	0.019	0.018	0.015	0.014	0.013
Average Resistance of the protective bar (+ PE Sheet)	RPE [n	RPE [mΩ/m]		0.043	0.043	0.043	0.033	0.028	0.022	0.016	0.014
Average reactance of the protective bar	XPE [mΩ/m]		0.054	0.054	0.054	0.054	0.044	0.032	0.022	0.017	0.016
Average resistance of the fault loop (STD)	Ro [m	ιΩ/m]	0.064	0.063	0.055	0.048	0.038	0.034	0.028	0.024	0.021
Average resistance of the fault loop (+ PE Sheet)	Ro [m	Ro [mΩ/m]		0.086	0.078	0.071	0.052	0.044	0.034	0.026	0.022
Average reactance of the fault loop	Xo [m	Ω/m]	0.07	0.07	0.07	0.07	0.06	0.04	0.03	0.02	0.02
Average impedance of the fault loop (STD)	Zo [m	Ω/m]	0.097	0.096	0.089	0.085	0.067	0.053	0.040	0.033	0.030
Average impedance of the fault loop (+ PE Sheet)	Zo [m	Ω/m]	0.113	0.112	0.105	0.100	0.076	0.060	0.045	0.035	0.030
Zero-sequence short-circuit average resistance phase - N	Ro [m	ιΩ/m]	0.037	0.036	0.029	0.023	0.016	0.013	0.010	0.008	0.007
Zero-sequence short-circuit average reactance phase - N	Xo [m	 Ω/m]	0.015	0.015	0.013	0.013	0.009	0.008	0.006	0.005	0.004
Zero-sequence short-circuit average impedance phase - N	Zo [m		0.040	0.039	0.032	0.026	0.019	0.015	0.012	0.010	0.008
Zero-sequence short-circuit average resistance phase - PE	Ro [m	ιΩ/m]	0.079	0.077	0.066	0.057	0.045	0.039	0.032	0.027	0.024
Zero-sequence short-circuit average reactance phase - PE	Xo [m		0.060	0.060	0.059	0.059	0.048	0.035	0.024	0.019	0.018
Zero-sequence short-circuit average impedance phase - PE	Zo [m		0.099	0.098	0.089	0.082	0.066	0.053	0.040	0.033	0.029
	cosø =	0.70	42.1	42.6	35.5	30.7	21.8	18.1	14.2	11.6	9.7
	COSØ =	0.75	43.5	44.0	36.6	31.4	22.3	18.6	14.5	11.9	9.9
	cosø =	0.80	44.7	45.3	37.6	32.1	22.8	19.1	14.9	12.1	10.1
Voltage drop with distribuited load ΔV [V/(m*A)]10 ⁻⁶	cosø =	0.85	45.8	46.4	38.4	32.5	23.2	19.4	15.1	12.3	10.3
	cosø =	0.90	46.6	47.3	39.0	32.7	23.4	19.6	15.3	12.4	10.4
	cosø =	0.95	46.9	47.6	39.1	32.5	23.3	19.5	15.2	12.3	10.3
	cosø =	1.00	44.2	45.0	36.6	29.7	21.4	18.0	14.0	11.2	9.4
Weight (STD)	p [kg		28.1	28.6	33.1	38.7	52.6	62.9	83.1	104.2	124.1
Weight (+ PE Sheet)	p [kg		31.8	32.3	36.7	42.4	57.7	68.5	90.4	113.8	135.4
Fire load	[kWh		5.6	6.9	6.9	10.0	10.3	13.1	20.0	23.8	26.3
Degree of protection	IF		55	55	55	55	55	55	55	55	55
Insulation material thermal resistance class			B/F*	B/F*	B/F*						
Losses for the Joule effect at nominal current	P [W	//m]	98	156	198	263	296	389	498	623	817
Ambient temperature min/MAX	[°(-1	-5/50	-5/50	-5/50	-5/50	-5/50	-5/50	-5/50	-5/50	-5/50

 * Class F thermal resistance (155°C) available on request In: rated current referred to a room temperature of 50°C

measurement of special element lengths



The exact length of the piece to be ordered can be determined by measuring the distance between the elements (as shown in the picture) and then subtracting 285 mm from the dimension that has been taken

Length of element = Q - 285 mm

Example: Dimension measured Q = 2500 mm Order a element (2500 - 285) = 2215 mm

Measurement of the size for the ordering of a special path element

Horizontal elbow

the exact length of the piece to be ordered can be determined by measuring the dimensions Q1 and Q2 (as shown in the picture) and then subtracting 70 mm from each dimension that has been taken

Dimension of the element to order: A = Q1 - 70 mm B = Q2 - 70 mm

BAHRA

Compact BUSWAYS - HE

suggestions for the project development

1.	Rating		Example for quotation check list:
	2500 A		Checklist to be done during the project
2.	Application:		 Verify the measurements of the drawings, the correct position of the equipment (HV/LV transformer and LV electric board enclosures)
	Transport Distribution No. of out	lets	 Check the availability of drawings required (transformer, electric board, etc.)
3.	Icc at the beginning of the		 Check for the existence of unforeseen obstacles in the installation which could impede the run of the Busbar (for example pipelines, ventilation and air-conditioning ducts)
4.	Material:		 Agree upon who is responsible for providing the connection from the Busbar to the other devices (HV/LV transformer
	Copper	M	and LV electric boards)
5.	Degree of protection:		Example of detail of the project
	IP55 (standard)	M	1600 635 330 SEZ. A-A 800 800 165 165
	IP65/IP66		
6.	Painting :		a case in
	RAL7035 (standard)	₩	R RETRO
	Different RAL		
	colour on request		
7.	Neutral section:		
	100% (standard)		mone TRI
	200% 2N		
8.	Nominal ambient		400 400 400 800 600 1735 330 835 1100 1100 1000 2800 2800 2800
	temperature:		,000 ,200 200.
	50°C (standard)	$\mathbf{\overline{M}}$	1400 k^g
	Other on request		
9.	Attach Busbar layout*		
	Drawing		8
	Dwg file		
10.	PE cross section		MX. 781
	→= 50%		
	→ = 100%		

Bahra TBS provides without charge, if required:

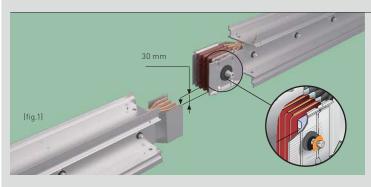
750

TA

3100

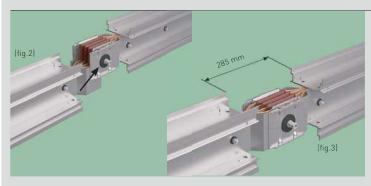
The mechanical layout of the projectStudy of the connections between the Busbar and the transformer or between electric board enclosures

Kª


TA

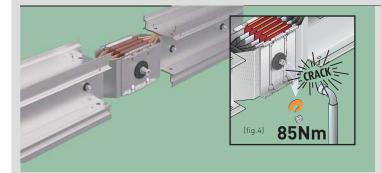
- Suggestions for the type of fixing (floor, wall, ceiling...)
 Possibility of site measurement by qualified persons
- Telephone assistance during the entire installation stage by the Engineering Design Office

Compact BUSWAYS - HE installation guidelines


Installation sequence of the junction

The installation instructions are placed on every element near the junction

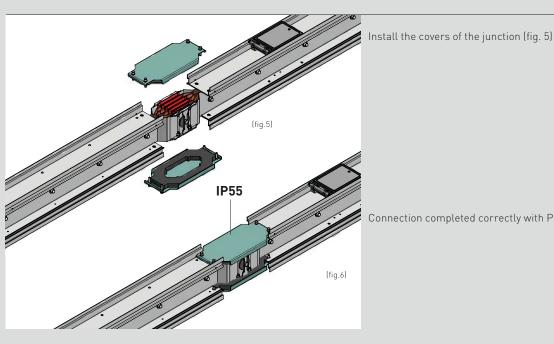
Make sure that the contacts are clean


Join the two elements together (Fig.1)

Make sure that the earth plate of the straight element is inserted behind the front plate of the junction monobloc (Fig.2)

The positioning pin on the monobloc should be fitted into the corresponding slot on the earth plate

Verify the distance between elements, 285mm, before tightening the monobloc completely (Fig.3)


Tighten the bolt of the monobloc until the 1st head breaks off (Fig. 4).

The bolt that tightens the monobloc has a second head which is used when carrying out operations or inspections on the line

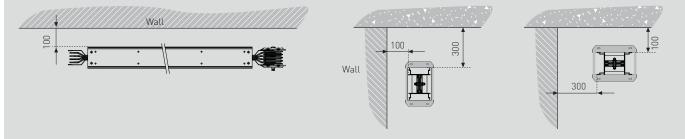
The nominal tightening torque is 85Nm

In standard execution the self-shearing nut is fitted on the opposite side of the Neutral.

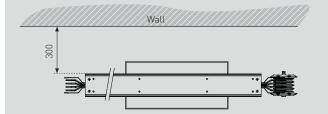
Connection completed correctly with Protection degree IP55 (fig.6)

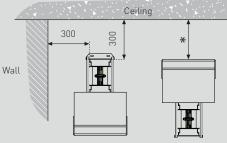
mechanical design precautions

Below are some precautions that may be useful to avoid problems during the assembly, which we recommend should be taken into account during the design

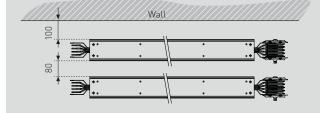

Minimum distances from the structure

The minimum distance from the walls, to avoid problems during edgewise installation of the busbar, is 300 mm The variables that must be taken into account for correct assembly are:

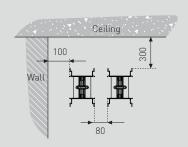

- position of the bolt for tightening the Monobloc; the minimum required distance is 100 mm;
- sizes of the distribution element (box) selected for
- any brackets and the closing of the junctions;
 any material required for the actual installation in
- order to compensate for wall imperfections

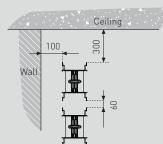

In case of rising mains installation, if the system does not require fire barriers, the bracket supporting the bracket can be directly secured to the wall. Otherwise, allow for a spacing support between the bracket and the wall, to ensure that the back of the busbar remains at a distance of 100 mm from the wall, therefore ensuring enough space for the positioning of the partitions

Minimum distance of the wall / ceiling elements



When there are tap-off units along the busbars, the minimum distances depend on the dimensions of the tap-offs selected



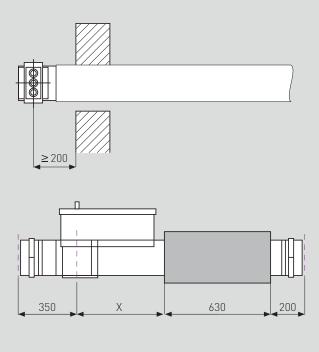


*When there is a tap-off box installed above the busbar, check the overall dimension of the open cover of the tap-off unit used in the specific section

Minimum installation distance when there are several overlapped lines

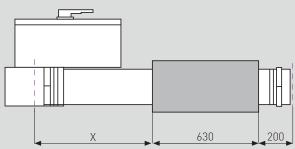
Minimum installation distance when there are

several adjacent lines



technical information

The minimum distance from the junction to the point the busbar crosses the wall or other structure must be at least 200 mm, to ensure the junction of the junctions


In case plug-in boxes and fire barriers are required on the same element the minimum distance between the box and the partition must be taken into account, at the same time allowing for the necessary free space in the junction area and the minimum distance between the distribution outlet and the start of the element

By taking all these variables into account, it is possible to obtain the minimum size of the element in order be able to fit the partition and the plugin box. The tables that follow summarise the minimum sizes

Refered to Copper

PLUG-IN TAP OF BOXES (X MINIMUM SIZE)						
Туре	Rating (A)	X (mm)				
1	63 – 160	500				
2	250 - 630	720				

Refered to Copper

PLUG-IN BOXES ON THE JUNCTION							
Туре	Rating (A)	X (mm)					
3/4	125 – 400	700					
3/4	630	820					
3/4	800 - 1250	1120					

Connection to the board

As a rule, the manufacturer of the board is responsible for connecting the connection element and the distribution busbars inside the board

On request Bahra TBS may develop and supply the connections, subject to all necessary details being available

All types of connections must be agreed and checked with the board manufacturer

Short circuit withstand

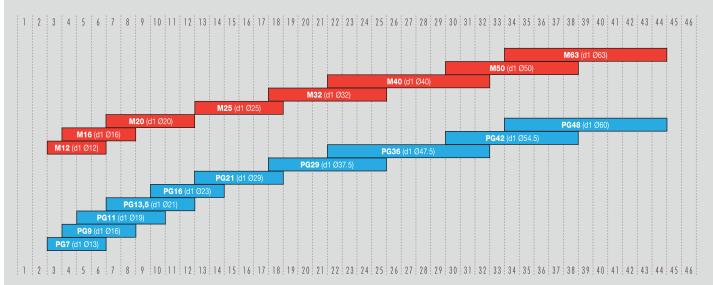
The short circuit withstand of the connection elements depends on the connection of the busbars inside the distribution board The declaration of short circuit withstand for the system busbars may only be supplied by the board manufacturer. When using Bahra TBS boards and Bahra TBS busbar trunking system it will be possible to obtain a short circuit certification

technical information

Table of comparison between boxes and cable glands (Bahra TBS)

The following table shows the maximum number of Bahra TBS cable glands that can be installed on Plug-in boxes using the appropriate flanges

COMPARISON TABLE BETWEEN Plug-in boxes AND CABLE GLANDS (Bahra TBS)									
	Useful dimension for the passage of the cables and flange size	M16-PG9 (63 A cable) 10 mm2 section PVC insulated one-pole cable	M20-PG13.5 (63 A cable) 10 mm2 section PVC insulated one-pole cable	M25-PG21 (250 A cable) 70 mm2 section PVC insulated one-pole cable	M32-PG29 (400 A cable) 150 mm2 section PVC insulated one-pole cable	M40-PG36 (630 A cable) 300 mm2 section PVC insulated one-pole cable			
63/160 A Plug-in box with section cover (Type 1)	80 x 70 FL 110 x 100	No. 10	No. 5			—			
250/630 A Plug-in box with section cover (Type 2)	150 x 220 FL 235x 180	No. 66	No. 36	No. 20	No. 13	No. 8			
125/400 A Plug-in box on the junction (Type 3/4)	130 x 180 FL 180 x 230		No. 30	No. 16	No. 9				
630 A Plug-in box on the junction (Type 3/4)	270 x 160 FL 340 x 230			No. 28	No. 15	No. 10			
800/1250 A Plug-in box on the junction (Type 3/4)	380 x 210 FL 430 x 260			No. 57	No. 32	No. 18			


Note: The value shown on the table is the max no. of PG that may be installed in the cable flange For boxes with section cover the most demanding condition is considered, which means that only one of the two cable flanges is used

Cable glands table

When choosing the cable glands, please refer to the Bahra TBS catalogue

Dimension d2 Ø cable [mm]

Dimension d2 Ø cable [mm]

Ceramic fuse 5 x 20								
Operating feat In = 6.3		2.1 In	2.75 In	4 In	10 In	50	Quick fuse • I _n = 6.3A • U _n 250V ceramic fuse IEC 127	
Operating time	e >1h	< 30 min	10 ms - 3 s	3 ms - 30 ms	< 20 ms		• Breaking capacity H 1500A	
When choosing all fuses, please refer to the general Bahra TBS catalogue								

Joule effect losses in busbars

Technical information

Losses due to the Joule effect are essentially caused by the electrical resistance of the busbar Lost energy is transformed into heat and contributes to the heating of the conduit of the environment The calculation of power loss is a useful data for correct sizing of

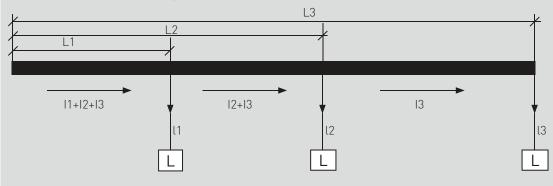
the building air conditioning system

Three-phase regime losses are:

Pj = 3•Rt•lb²•L 1000

In one-phase regime:

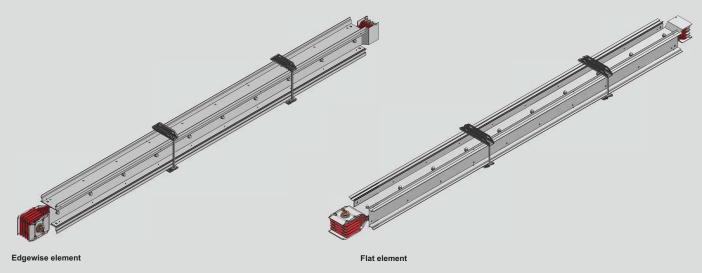
Pj = 2•Rt•lb²•L 1000


Where:

- Utilisation current (A) l_b =
- $\tilde{R}_{t} =$ Phase resistance for unit of length of the busbar
 - trunking system, measured at thermal regime $\,(m\Omega/m)$
- L = Busbar length (m)

For accurate calculation, losses must be assessed trunk by trunk taking into account the transiting currents; for example, in the case of the distribution of the loads represented in the figure one has:

	Length	Transiting current	Losses
1st trunk	L1	11+12+13	$P1 = 3R_{t}L1(1+ 2+ 3)^{2}$
2nd trunk	L2-L1	12+13	P2 = 3R t (L2-L1) (I2+I3) ²
3rd trunk	L3-L2	13	P3 = 3R t (L3-L2) (I3) ²


Total losses in the busbar trunking system Pt = P1+P2+P3

Losses based on the installation method

Thermal dispersion, rating and IP protection degree are independent from the type of installation (edgewise, flat, vertical)

This means that it is possible to install the Bahra TBS busbar trunking system as preferred, without having to consider a possible system downgrading

Technical information

Busbar overload protection is ensured following the same criteria used for cables. It will be necessary to check the relationship:

$\mathbf{I}_{b} \leq \mathbf{I}_{n} \leq \mathbf{I}_{z}$

Where:

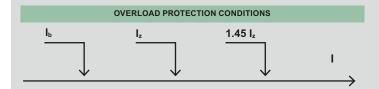
- = Circuit utilisation current I,
- Switch rated current ۱_n ۱_, =
- = Rating at permanent cable regime

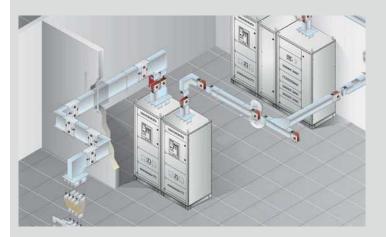
The lb utilisation current in a tree-phase system is calculated baseon td he following formula:

> $\mathbf{I}_{\mathbf{b}} = \underline{\mathbf{P}_{\mathbf{t}} \bullet \alpha \bullet \beta \bullet \mathbf{d}}$ [A] √3•Ue•cosφ_m

Where:

- P, d = Sum of the active powers of the loads installed [W] = Power supply factor equal to: 1 if the trunking is only powered from one side; if the trunking is powered from the centre or from both ends at the same time Ue = Operating voltage in [V] cos m = Average power factor of the loads
- = Operating current [A] I,
- = Diversity coefficient of the loads [.] α
- β = Coefficient of utilisation of the loads [.]

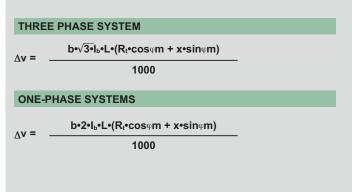

The ambient temperature where the busbar trunking system is installed impacts on its rating During the design stages, it will be necessary to multiply the rating value at the reference temperature by a correction coefficient referred to the final operating temperature


All Bahra TBS products have been sized and tested for an average ambient temperature of 35 °C. For installation in environments with average daily temperatures lower than 35 °C, the rated current of the busbar must be multiplied by a k1 factor, which is higher than the unit for temperatures lower than 35 °C, and lower than 55 °C. than the unit if the ambient temperature is higher than 35 °C:

$I_z = I_z 0 \cdot Kt$

Where:

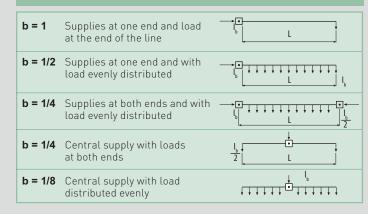
- 1,0 is the current that the busbar trunking system can carry for an indefinite time at its reference temperature (35 °C)
- Kt is the correction coefficient for ambient temperature values other than the reference temperature, as shown in the following table



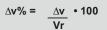
Selection of the busbar trunking system based on voltage drop

Technical information

If the line is particularly long (\rightarrow 100 m), it will be necessary to check the value of the voltage drop. For systems with power factor (cos φ m) not lower than 0.7 the voltage loss can be calculated using the following formulas:

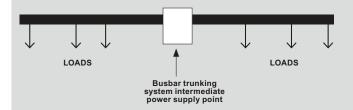

If the three-phase system and the power factor are not lower than $\cos\phi$ = 0.7, the voltage loss may be calculated using the voltage drop coefficient shown in Table 1

$$\Delta v\% = b \cdot \frac{k \cdot lb \cdot L}{Vn} \cdot 100$$



The current distribution factor "b" depends on how the circuit is fed and on the distribution of the electric loads along the busbar:

Table 1 - The distribution factor of the current "b"



The percentage voltage drop can be obtained from:

Where Vr is the system rated voltage

In order to limit the voltage drop in case of very long busbar trunking systems, it is possible to allow for a power supply at an intermediate position, rather than at the terminal point

Calculation of the voltage drop with loads not evenly distributed

In case the load cannot be considered evenly distributed, the voltage drop may be determined more accurately using the relationships shown below

For the distribution of three-phase loads, the voltage drop can be calculated using the following formula, on the assumption (generally verified) that the section of the busbar trunking system is consistent:

$$\begin{split} \Delta v &= \sqrt{3} \left[\text{Rt} \left(\text{I1L1cos } \phi 1 + \text{I2L1 } \cos \phi 1 + \text{I3L3 } \cos \phi 3 \right) \right. \\ &+ x \left(\text{I1L1sin } \phi 1 + \text{I2L2 } \sin \phi 2 + \text{I3L3 } \sin \phi 3 \right) \right] \end{split}$$

In general terms this becomes:

$\Delta v = \sqrt{3}(R_{t} \cdot \sum li \cdot Li \cdot \cos \varphi mi + x \cdot \sum li \cdot Li \cdot \sin \varphi mi)$

1.000

60

Technical information

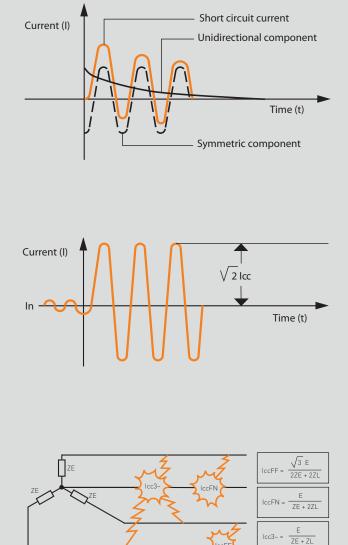
The CEI 64-8 standard indicates that, for the protection of the circuits of the system, it is necessary to allow for devices aimed at interrupting short circuit currents before these become dangerous due to the thermal and mechanical effects generated in the conductors and the connections In order to size the electric system and the protection devices correctly, it is necessary to know the value of the estimated short circuit current at the point where this is to be created This value enables in fact to correctly select protection devices based on their own tripping and closing powers, and to check the resistance to electro-dynamic stress of the busbar supports installed in control panels, or/and of the busbar trunking systems

Characterisation of short circuit current

The estimated short circuit current at a point of the user system is the current that would occur if in the considered point a connection of negligible resistance was created between conductors under voltage The magnitude of this current is an estimated value that represents the worst possible condition (null fault impedance, tripping time long enough to enable the current to reach the maximum theoretical values) In reality, the short circuit always occurs with significantly lower effective current values

The intensity of the estimated short circuit current essentially depends on the following factors:
Power of the cabin Transformer, meaning that the higher is the power, the higher is the current;
length of the line upstream

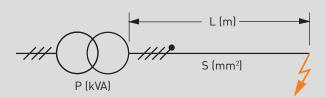
In three-phase circuits with Neutral it is possible to have three different types of short circuit:


- phase-phase;
 phase-Neutral;
- balanced three-phase (most demanding condition)

The formula for the calculation of the symmetric component is:

Where:

- **E** is the phase voltage;
- **ZE** is the secondary equivalent impedance of the
- TRANSFORMER measured between the phase and the Neutral;
- ZL is the impedance of the phase conductor only



Short circuit withstand (continued)

Analytical determination of short circuit currents

In order to calculate the value of the estimated short circuit current at any point of the circuit, it is sufficient to apply the formulas shown below, knowing the impedance calculated at the origin of the system up to the point being assessed In the formulas shown below, the value of the short circuit power is considered infinite and the short circuit impedance is equal to 0. This makes it possible to define short circuit current values bigher than the actual ones, but generally accentable

higher than the actual ones, but generally acceptable

Line resistance RL = r • L	RL = resistance of the line upstream (m) r = specific line resistance (m/m) L = upstream line length (m)
Line reactance XL = x • L	XL = upstream line reactance (m) x = specific line reactance (m/m)
TRANSFORMER resistance RE = $\frac{1000 \text{ Pcu}}{3 \text{ ln}^2}$	RE = transformer secondary equivalent resistance (m) Pcu = transformer COPPER losses (W) In = transformer Rated current (A)
TRANSFORMER impedance ZE = <u>Vcc% V²c</u> 100 P	ZE= transformer secondary equivalent impedance (m)Vc= phase voltage (V)Vcc% = percentage short circuit voltageP= transformer power (kVA)
TRANSFORMER reactance XE = $\sqrt{ZE^2 - RE^2}$	XE = transformer secondary equivalent reactance (m)
Short circuit impedance Zcc = √ (RL + RE)² + (XL + XE)²	Zcc = total short circuit impedance (m)
Estimated short circuit current $Icc = \sqrt{\frac{Vc}{3}} \cdot Zcc$	Icc = symmetric component of the short circuit current (kA)

COPPER							
Rating (A)	kA three-phase Icw	lpk three-phase lpk	kA one-phase Icw	kA one-phase Ipk			
800	45	95	27	57			
1000	45	95	27	57			
1250	50	105	30	63			
1600	60	132	36	76			
2000	60	132	36	76			
2500	88	194	53	116			
3200	88	194	53	116			
4000	176	387	106	232			
5000	176	387	106	232			

Technical information

In a distribution system, currents and voltages should have a perfectly sinusoidal shape. However, in practice the equipment contains electric devices such as changeover devices or dimmers that make the load not linear

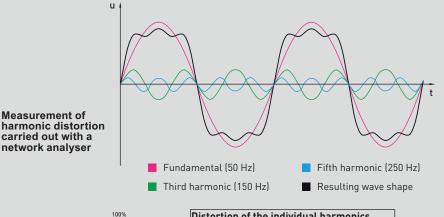
The currents absorbed, although at regular intervals and with frequencies equal to that of the rated voltage, sometime have a non-sinusoidal wave form, which has the following negative effects:

- worsening of the power factor; heating of the Neutral;
- additional losses in electric machinery (transformers and motors); instable operation of the protection eléments (thermal
- magnetic and earth leakage circuit breakers)

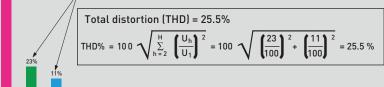
In industrial plants these conditions have been occurring for a long time, However, they are now occurring more and more in service sector distribution systems, where, from backbone distribution (which uses three-phase lines), one-phase loads are often distributed, which contributes to increasing the unbalance of the electric system

Each type of non-sinusoidal periodical wave may be split into a more or less large number of sinusoids (called harmonic components), which frequency a whole multiple of the frequency of the wave shape observed

A deformed current at a frequency of 50 Hz, like for example that represented by the red line on the figure, consists of many sinusoidal currents with frequency of 50 Hz (fundamental), 100 Hz (second harmonic components), 150 Hz (third harmonics), and so on


The presence of current harmonics represents an important problem, causing overload conditions both on phase conductors, and on any Neutral conductor, and results in the reduction of the conductor permitted load

Choice of the rating when in the presence of harmonics


When in the presence of harmonics, and when using the chosen rated current, the busbar to be used shall have the rating specified in the below table

Rated current	800 A 1000	A 1250 A	1600 A	2000 A	2500 A	3200 A	4000 A	5000 A
---------------	------------	----------	--------	--------	--------	--------	--------	--------

Bahra TBS busbar to be used:									
THD ≤ 15%	800 A	1000 A	1250 A	1600 A	2000 A	2500 A	3200 A	4000 A	5000 A
15% ← THD ≤ 33%	1000 A	1250 A	1600 A	2000 A	2500 A	3200 A	4000 A	5000 A	—
THD → 33%	1250 A	1600 A	2000 A	2500 A	3200 A	4000 A	5000 A	—	—

Distortion of the individual harmonics

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 Hz

Degrees of protection

IP: degree of protection provided against intrusion

IP

The protection enclosures are classified (IEC 60529) in according to their degree of protection against weather conditions and external agents. The degree of protection is indicated by two digits (protection against solid bodies and liquids) following the symbol IP

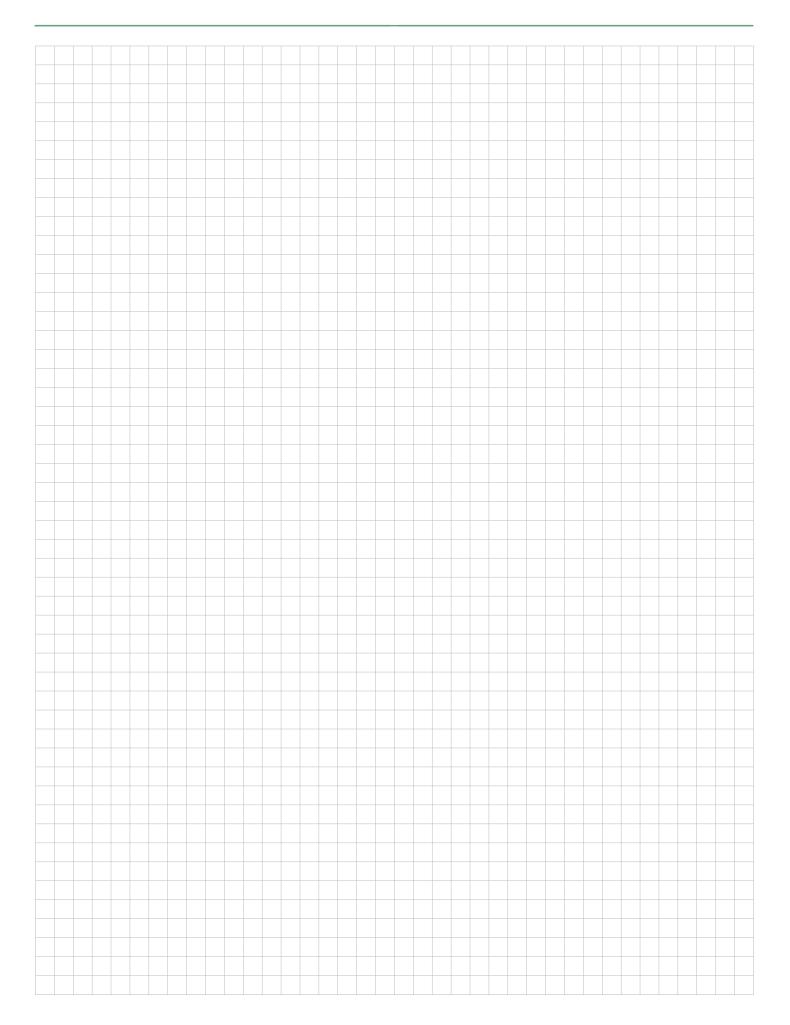
To increase the ease of choice of the most suitable busbar, in according to installation requirements, below there is a summary of their performance, based on the IP degree of protection according to the IEC 60529 standard

1st digit IP

Protection against penetration of solid bodies					
	O No protection				
Ø 50 mm	Protection against solid bodies larger than 50 mm (e.g.: accidental contact)				
g 12,5 mm	2 Protection against solid bodies larger than 12 mm (e.g.: finger)				
()) ^{Ø 2,5} mm	3 Protection against solid bodies larger than 2.5 mm				
()) ^Ø 1mm	4 Protection against solid bodies than 1 mm				
\bigcirc	5 Protection against dust				
\bigcirc	6 Complete protection against dust				

2 nd digit IP								
Protection against penetration of liquids								
15°	2	Protection against drops of water falling up to 15° from the vertical						
	3	Protection against drops of water up to 60° from the vertical						
Q	4	Protection against sprays of water from all directions						
	5	Protection against jets of water from all directions						
	6	Protection against jets of water (similar force to heavy seas)						
15 cm ^g	7	Protection against the effects of immersion						
	8	Protection against effects of immersion under pressure						

Degrees of protection


IK: degree of protection of equipment to mechanical impact

IK

Standard IEC 62262 defines an IK code that characterises the aptitude of equipment to resist mechanical impacts on all sides

IK	Test	lmpact energy (In joules)
IK 00		0
IK 01	0.2 kg	0.15
IK 02	0.2 kg	0.2
IK 03	0.2 kg	0.35
IK 04	0.2 kg	0.5
IK 05	0.2 kg	0.7
IK 06	0.5 kg 200 mm	1
IK 07	0.5 kg 400 mm	2
IK 08	1.7 kg	5
IK 09	200 mm	10
IK 10	400 mm	20

NOTES

Transformers and Busways Solutions Company

Transformers and Busways Solutions Co. (LLC) - TBS

CPC Industrial Park, P.O Box 27027 Jeddah 21941, Saudi Arabia Tel (966) 12 634 9400, Fax (966) 12 634 9404 www.bahra-tbs.com

Bahra TBS Sales Offices Middle East Region

Riyadh

Salah Ad Din Al Ayyubi Branch Road Opposite of Al Rajhi Mosque Same building of Shawarmar Riyadh, KSA T: +966 11 472 1871 E: sales@bahra-tbs.com

Dammam

King Abdulaziz Road Hawa Building 3rd Floor,Dammam - KSA T: +966 13 835 2391 E: sales@bahra-tbs.com

Dubai

P.O. Box 18155, DIP2 Warehouse 2 Near Arabian Attieh for Steel Co.(LLC) Dubai Investment Park, Dubai T: +971 4 227 7041 F: +971 4 235 3028 E: sales@bahra-tbs.com

Abu Dhabi

P.O. Box 94339, Office No. 1201 NBK Tower, Airport Road, Abu Dhabi T: +971 2 666 1607 F: +971 2 666 1659 E: sales@bahra-tbs.com

Iraq

Harthiya - Alkindi street, Zayton Bldg 6th Floor, Baghdad – Iraq E: sales@bahra-tbs.com

Egypt

601/1 Delta stars towers .Nasr Rd, Al Manteqah al Sadesah, Nasr City, Cairo Governorate, Egypt E: sales@bahra-tbs.com

Kuwait

P 0 Box 192, Kuwait 15452 T: +965 2 241 5096 E: sales@bahra-tbs.com

FOLLOW US ON

f	facebook.com/Bahra-TBS
y	twitter.com/BahraTbs
You Tube	www.youtube.com/Bahra TBS
in	linkedin.com/company/bahra-tbs
0	instagram.com/bahratbs

